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Array as primitive

* Numpy uses the array as a primitive—kind of like a

Python list. X np aTTaY([1;2,3,4,5,6])

* Arrays can be indexed and are mutable like python.

 Can also do slicing but be careful—returns a view instead

of a copy. Mutating the view mutates the original!

y = x[:3]
y[o] = 6
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Conditional selection

* Can pass a conditional within brackets:
b = a[(a > 18) § (a < 25)]

* & Issame as python's and and | is same as python’s or.

divisible 2 or 3 = a[(a%2=0)|(a%3=0)]




Operations

e + - / *all do the operation element wise.

data data data data data

* |f you try to perform an operation with two different

shapes, it will attempt to broadcast to make it work.

1 1 1.6 1.6
* 1.0 = * =
2 2 1.6 3.2



@
Series and DataFrame as
o o, O
primitive
* Series: labelled one-dimensional array holding data of

4.0

any type; integers, strings, Python object’s. : s

12.0@

NaN
32.0
18.@
: floatbd

e DataFrame: two-dimensional data structure that acts like

pd.Series([4, 5, 12, np.nan, 32, 18])

a table with rows and columns.

df pd.DataFrame(np.array, index=row_names, columns=colum_names)




Missing data

« df.dropna(): drop any row with missing data.
» dffillna(value=None): fill any missing data with value.

e dfiisna(): returns a new DataFrame where all cells with

mMissing values are set to False; 2

otherwise, True. @ False

1 True
2 True




Importing/Exporting

e pd.read_csv(“filepath.csv”): to read a csv and load as

DataFrame.
e df.to_csv(“filepath.csv”): save DataFrame to csv.
 pd.read_parquet(“filepath.parquet”)
o df.to_parquet(“filepath.parquet”)
* pd.read_excel(*filepath.xlsx”)

o df.to_excel(“filepath.xlsx”)



Pie Chart

* You give a 1D collection (x) where the proportion of each

iIs computed as: RESVARTLICY!

 Can optional give a string list aisymaniidian

of labels.

Other

plt.pie(x, labels=labels])

Multigenerational

y One parent
Couple w/ children

StatCan21 Houshold Disttribution 10



Bar Charts

* You give the bar labels (x) and the height of each (height)

* Can optionally specify:
 Width of each bar (width)

* Bar alignment:

“‘center” or "edge”

plt.bar(x, height,

width=0.8, align="center")
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o -

15to 24 25 to 39 40 to 54 55to 74 75 and over

StatCan21 Toronto Household
ownership rate by age.
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Box Plot

* Give data as a 2D collection where each entry is a column

and for each column you x
give all the raw data.
, , g S N —
* Can optionally specify: >~ . e °
8
. Labels (tick_labels)

T T T T T T T T T
AB BC MB NB NL NS ON PE Qc SK

plt.boxplot(x, tick_labels=labels) IR eGPy YWYty VA ree
prices per province for 2024.



Histogram

* Simply pass all of your data (x).

* Can optionally specify:

801

* Number subdivisions (bins)

40

20 A

plt.hist(x, bins=10)

o
20 40 60 80 100 120 140 160 180

Histogram of a random
distribution at mean 100 and std

div of 25 with 30 subdivisions. 13



Line Charts

* Glve your numerical x and y data.
* Can optionally pass:
* Basic formating

* To scale x or y (scalex, scaley)

plt.plot(x, vy, [fmt]
scalex=True, scaley=True)

le7

4.25 A

4.00 A

3.75 A

3.50 A

3.25 A

3.00 A

2.75 A

2.50 A

2.25 A

T T T T T T
1270 1980 1990 2000 2010 2020

Canada yearly population since
StatCan.
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Multi-Line Charts

e Can call plot multiple times to place multiple lines on

same chart.

60

50 4 — 15to0 24
25 to 39
—— 40 to 54

with label. e

* You can specify legend’s label

30 A

plt.plot(x1, y1, label B
p-L t p -l- O t ( X2 ? y 2 9 -L a b e -l. 20I12 20I14 20I16 20I18 20I20

plt.plot(x3, y3, label StatCan houshold ownership
rates by age group 2011, 2016,
and 2021.
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Scatterplot

* Passinthe xandy.

204

* Can optionally specify:

=
2+]
1

e Colour each gets (c) asa 1D

Bill Depth {mm)

=
(2]

collection for each entry. Joms o o o
1 8 Chinstrap Ooé'%% o :
Gentoo ) o

Bill Length (mm)

plt.scatter(x, y, c=colours)

3 different peinguin samples Bill Length
vs Bill Depth, Palmer Peinguins.
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* You pass a pandas

DataFrame.

* Many optional arguments. .

sns.heatmap(dataframe)

6 7
Month

Average daily sea temperatures for each
month sector 11417 off coast Vancouver
1.0m depth, ERDDAP
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Pair Plot

* Pass in pandas DataFrame as first argument.

* Specify which variable should change colours (hue).
sns.pairplot(data,

« Can optionally specify: hue=hue,
palette=palette,
* palette: seaborn colour pallete vars=vars,

diag kind="auto")
e vars: limit which variables to use (otherwise all)

* diag_kind: "auto”, “hist”, “kde”, None 18
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petal_width
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Machine Learning

DSTS 153-163

20



Model

« Aims to tell a relationship between variables.

* |s imperfect.

21



ML — model fitting

 Machine Learning is the process of fitting models to

given data to minimise a given loss function.

* Can think of fitting a linear line on a scatterplot.

* Every model has different parametres and these are

learned from the data provided.

22



Types of training

e Supervised: give data and labels.
 Unsupervised: give data no labels.
 Semi-supervised: some data has labels.

* Online: keep learning as new data comes in.

* Reinforcement: use feedback on performance to update.

23



How to train

* We split our data into training and test datasets (*2:1).
* Fit our model to the training data.

* Test the accuracy of our model on the validation dataset.

24



random

def split(xs: list, ys: list, percent: float):
assert len(xs) len(ys)

idxs = [1 for i range(len(xs))]
random.shuffle(idxs)

idx = int(len(idxs) * percent);
train_idxs idxs[:idx]
test_idxs idxs[idx: ]

return (
[xs[i] for 1 train_idxs],
[xs[i] for 1 test _idxs],
[ys[i] for i train_idxs],
[ys[i] for i test_idxs]

)

X_train, x_test, y train, y_test = split(x, vy, 0.8)



Dangers of ML

 Underfitting: where the model performs poorly on our

data.

e Overfitting: where the model performs very well on our
provided data but fails when given new data (poor

generalisation).

26



30

25 4

True Linear Relationship
© Training Data
= = Underfitting (Horizontal Line)
= Good Ft (Linear)
—— Qverfitting (Degree 12 Polynomial)

Training Set

10
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What if | evaluate multiple
models

* |If you fit multiple models on the train data and then

choose the model that performs best on the test data,
you are meta-training.
* Test set restricted to performance only!

* Split data into train (for training), validation (choosing

best model), test (to see performance).

28



Measuring performance in
binary classification

True Positive: Predict pos, is pos.
False Positive (Type | error): Predict pos, is neg.
False Negative (Type Il error): Predict neg, is pos.

True Negative: Predict neg, Is neg.

29



Can create a confusion matrix

Pos Neg
Predict pos |TP FP
Predict neg |FN TN

Accuracy: (TP + TN) / total
Precision: TP/ (TP + FP)
Recall: TP / (TP + FN)
Fl-score:2*p*r/(p +r)

30



overfitting

Bias vs Variance

Variance

4

Bias

Geekforgeeks

~ underfitting
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Evaluating non-binary

« Accuracy: # correct / total
* Classification: giving the right label.

* Regression: within a given range from correct value,

32



Features

* Variables you give your model to predict an output.

* You should choose features carefully based on domain

expertise.

« Sometimes features are not provided and you must

extract it from some data.

« Sometimes you have too many features and can reduce

It with dimensionality reduction.

33



Simple Linear Regression

DSTS 185-190

34



What if our data looks like this?

| ooks like a linear

25 &
o relationship!
20 4 e
o ® ’ o - +
. y=mx 40
> 0oe® *® °

o’ * def predict(x, m, b):
10 - o ° return m X b
i .--...- o0

.. ]



Performance is sum of squared
errors

* Errorissimply the difference between what we predict

def error(y_pred, y):

and the actual.

return y_pred y

* We can maybe calculate our total error of our model!

- But if one point has error -1 and the other +1 => they cancel.

* |Instead we need to square the errors.

def sqr_error(x, y, m, b):

return sum([error(predict(x_i, m, b), y_1)*%2
for x_ i, y_i zip(x, y)1)

36



We should choose m and b to
minimise square error

b=y—mxX
__Covix,y) _2(x=X)ly~y))
VCJI’(X) Z(X/_)?f

37



25

20 4

15 ~

10 ~

The result

Doesn't that look

good.

We need a way to
evaluate how well
It does besides

error.
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Coefficient of determination
(R-squared)

« Measures the total variation of the dependent variable

that is captured by the model.

 Score of 1 means perfectly encapsulated.

39



The result

25 1 @
®
20 4
15 ~
=

10 ~

R~2 = 0.9047
5_

S o
0 2 4 6 8 10
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Closed form—so done?

* The closed form is expensive to compute if you have a
lot of data.

e We can instead look at the data and infer what would

be the best direction to improve our performance.

- This is called gradient descent.

41



Cradient Descent

e We first need to create a user-defined cost function that

quantifies how “wrong” a prediction is.

J(m,b)=SSE

Cost function as a function of mand b

] ] 2
J b)=—SSE=— = —b
(m,b)=-1SSE=—L3" (y,~mx,~b)

42



Take derivative relative to each
param to know dir of descent.

o) __1 X.(y.—m#*x,—b)

om 8]

0J

1
—=—— —MmxXx,—b
ab nZyI /
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The result

1 epochs
25 4 °
° o
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20 ¢ o
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51 o ..o..
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0_
0 2 4 6 8 10
X
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100 epochs
25 A °
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15 4
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10 A .
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0 2 4 6 8 10
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Lingo

 Hyperparametres are variables that are not learned but

defined by the user (the Ir and num epochs).

 Epoch:single pass-through all of the data.

46



Multiple Regression

DSfS 191-202

47



What if we have more than 1
feature?

* We cannot use simple linear regression, as we predict a

value based on a single independent variable.

V=m=*Xx+b

* We need a new formula.

y=a+Lxx+L %X +...+ B, xX,

T T

Feature Feature k

48



General formula

)A/i:a"'ﬁ]*Xi,1+:82*Xi,z"'"-"',Bk*Xi,k

y=a+Xp

:[-l{XJ,B numpy as np

def predict(X, beta):
return np.matmul(X, beta)

Beta needs another
dimension to do this

49



We can still use SSE

 But our input data needs to follow three restrictions:

- Each feature should not be perfectly correlated to

another (e.g Celsius and Fahrenheit).
- You need to have more data than features.

- All columns in matrix should be linearly

Independent.

50



The gradient stay very similar
1

JIp.)]=—SSE .

oJd 1"

—=—=> X —R xx. .
aﬁ n (yl B_j I,J)

Can vectorise as

] . A
Vel=——X'y-y)  y=XB
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General training paradigm

def fit(X, vy):
Useful external
library that show
with tgdm.trange(num_epochs) as t: progress
for t:

for batch_idx range(0, X.shape[0], batch_size):

X_batch = X[batch_idx:batch_idx+batch _size]
y _batch = y[batch_idx:batch_idx+batch_size]
grad = gradient(X_batch, y_batch, beta)
beta beta lr grad

epoch_loss = np.mean(squared_error(X, y, beta))
t.set_description(f"Loss: {epoch _loss:.4f}")

52
return beta, losses



Result

800 1

600

Loss

400 -

200 1

Epoch

80

T
100
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Hyperparametre Tuning

Domain expert selection
Manual Search (Trial and error)
GCrid search

Random search

Bayesian optimisation (advanced)

54



Is there a library?

. éea #f1 'nstall User Guide APl Examples Community® More ~ Q 0 B 1.7.2(stable)~

» Simple and efficient tools for predictive data analysis

.. h‘ S _ » Accessible to everybody, and reusable in various contexts
chine Learning in Pythor
. ElC /ne . eatnlig » Built on NumPy, SciPy, and matplotlib

Getting Started  Release Highlights for 1.7 » Open source, commercially usable - BSD license

* Scikit-learn implements many data science tools so that

you do not need to re-implement from scratch.

55
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