
INFO5002: Intro to Python for Info Sys
Week 11

Slides created by: Zachary Doucet

 2

Week 11
I. Machine Learning

II. Linear Regression

III. Multiple Regression

 3

Review

 4

Array as primitive
● Numpy uses the array as a primitive—kind of like a

Python list.

● Arrays can be indexed and are mutable like python.

● Can also do slicing but be careful—returns a view instead
of a copy. Mutating the view mutates the original!

x = np.array([1,2,3,4,5,6])

x[0] = 4

y = x[:3]
y[0] = 6

 5

Conditional selection
● Can pass a conditional within brackets:

● & is same as python’s and and | is same as python’s or.

b = a[(a > 18) & (a < 25)]

divisible_2_or_3 = a[(a%2==0)|(a%3==0)]

 6

Operations
● +, -, /, * all do the operation element wise.

● If you try to perform an operation with two different
shapes, it will attempt to broadcast to make it work.

 7

Series and DataFrame as
primitive

● Series: labelled one-dimensional array holding data of
any type; integers, strings, Python object’s.

● DataFrame: two-dimensional data structure that acts like
a table with rows and columns.

s = pd.Series([4, 5, 12, np.nan, 32, 18])

df = pd.DataFrame(np.array, index=row_names, columns=colum_names)

 8

Missing data
● df.dropna(): drop any row with missing data.

● df.fillna(value=None): fill any missing data with value.

● df.isna(): returns a new DataFrame where all cells with
missing values are set to False;
otherwise, True.

 9

Importing/Exporting
● pd.read_csv(“filepath.csv”): to read a csv and load as

DataFrame.

● df.to_csv(“filepath.csv”): save DataFrame to csv.

● pd.read_parquet(“filepath.parquet”)

● df.to_parquet(“filepath.parquet”)

● pd.read_excel(“filepath.xlsx”)

● df.to_excel(“filepath.xlsx”)

 10

Pie Chart
● You give a 1D collection (x) where the proportion of each

is computed as:

● Can optional give a string list
of labels.

plt.pie(x, labels=labels])

StatCan21 Houshold Disttribution

x / sum(x)

 11

Bar Charts
● You give the bar labels (x) and the height of each (height)

● Can optionally specify:

● Width of each bar (width)

● Bar alignment:
“center” or “edge”

plt.bar(x, height,
width=0.8, align="center")

StatCan21 Toronto Household
ownership rate by age.

 12

Box Plot
● Give data as a 2D collection where each entry is a column

and for each column you
give all the raw data.

● Can optionally specify:

● Labels (tick_labels)

StatCan24 Average monthly egg
prices per province for 2024.

plt.boxplot(x, tick_labels=labels)

 13

Histogram
● Simply pass all of your data (x).

● Can optionally specify:

● Number subdivisions (bins)

plt.hist(x, bins=10)

Histogram of a random
distribution at mean 100 and std
div of 25 with 30 subdivisions.

 14

Line Charts
● Give your numerical x and y data.

● Can optionally pass:

● Basic formating

● To scale x or y (scalex, scaley)

Canada yearly population since
StatCan.

plt.plot(x, y, [fmt]
scalex=True, scaley=True)

 15

Multi-Line Charts
● Can call plot multiple times to place multiple lines on

same chart.

● You can specify legend’s label
with label.

StatCan houshold ownership
rates by age group 2011, 2016,
and 2021.

plt.plot(x1, y1, label="ax1")
plt.plot(x2, y2, label="ax2")
plt.plot(x3, y3, label="ax3")

 16

Scatterplot
● Pass in the x and y.

● Can optionally specify:

● Colour each gets (c) as a 1D
collection for each entry.

plt.scatter(x, y, c=colours)

3 different peinguin samples Bill Length
vs Bill Depth, Palmer Peinguins.

 17

Heatmap
● You pass a pandas

DataFrame.

● Many optional arguments.

Average daily sea temperatures for each
month sector 11417 off coast Vancouver
1.0m depth, ERDDAP

sns.heatmap(dataframe)

 18

Pair Plot
● Pass in pandas DataFrame as first argument.

● Specify which variable should change colours (hue).

● Can optionally specify:

● palette: seaborn colour pallete

● vars: limit which variables to use (otherwise all)

● diag_kind: “auto”, “hist”, “kde”, None

sns.pairplot(data,
hue=hue,
palette=palette,
vars=vars,
diag_kind="auto")

 19

 20

Machine Learning
DSfS 153-163

 21

Model
● Aims to tell a relationship between variables.

● Is imperfect.

 22

ML — model fitting
● Machine Learning is the process of fitting models to

given data to minimise a given loss function.

● Can think of fitting a linear line on a scatterplot.

● Every model has different parametres and these are
learned from the data provided.

 23

Types of training
● Supervised: give data and labels.

● Unsupervised: give data no labels.

● Semi-supervised: some data has labels.

● Online: keep learning as new data comes in.

● Reinforcement: use feedback on performance to update.

 24

How to train
● We split our data into training and test datasets (≈2:1).

● Fit our model to the training data.

● Test the accuracy of our model on the validation dataset.

 25

import random

def split(xs: list, ys: list, percent: float):
 assert len(xs) == len(ys)

 idxs = [i for i in range(len(xs))]
 random.shuffle(idxs)

 idx = int(len(idxs) * percent);
 train_idxs = idxs[:idx]
 test_idxs = idxs[idx:]

 return (
 [xs[i] for i in train_idxs],
 [xs[i] for i in test_idxs],
 [ys[i] for i in train_idxs],
 [ys[i] for i in test_idxs]
)

x_train, x_test, y_train, y_test = split(x, y, 0.8)

 26

Dangers of ML
● Underfitting: where the model performs poorly on our

data.

● Overfitting: where the model performs very well on our
provided data but fails when given new data (poor
generalisation).

 27

Training Set Test Set

 28

What if I evaluate multiple
models

● If you fit multiple models on the train data and then
choose the model that performs best on the test data,
you are meta-training.

● Test set restricted to performance only!

● Split data into train (for training), validation (choosing
best model), test (to see performance).

 29

Measuring performance in
binary classification

● True Positive: Predict pos, is pos.

● False Positive (Type I error): Predict pos, is neg.

● False Negative (Type II error): Predict neg, is pos.

● True Negative: Predict neg, is neg.

 30

Can create a confusion matrix

Pos Neg
Predict pos
Predict neg

● Accuracy: (TP + TN) / total
● Precision: TP / (TP + FP)
● Recall: TP / (TP + FN)
● F1-score: 2 * p * r / (p + r)

Pos Neg
Predict pos TP FP
Predict neg FN TN

 31

Bias vs Variance

Geekforgeeks

underfitting

overfitting

underfitting

 32

Evaluating non-binary
● Accuracy: # correct / total

● Classification: giving the right label.

● Regression: within a given range from correct value.

 33

Features
● Variables you give your model to predict an output.

● You should choose features carefully based on domain
expertise.

● Sometimes features are not provided and you must
extract it from some data.

● Sometimes you have too many features and can reduce
it with dimensionality reduction.

 34

Simple Linear Regression
DSfS 185-190

 35

What if our data looks like this?
● Looks like a linear

relationship!

y i=mx i+b
def predict(x, m, b):
 return m * x + b

 36

Performance is sum of squared
errors

● Error is simply the difference between what we predict
and the actual.

● We can maybe calculate our total error of our model!

– But if one point has error -1 and the other +1 => they cancel.

● Instead we need to square the errors.

def error(y_pred, y):
 return y_pred - y

def sqr_error(x, y, m, b):
 return sum([error(predict(x_i, m, b), y_i)**2

for x_i, y_i in zip(x, y)])

 37

We should choose m and b to
minimise square error

b= ȳ−mx̄

m=
Cov (x , y)
Var (x)

=
∑ ((x i− x̄)(y i− ȳ))

∑ (x i− x̄)2

 38

The result
● Doesn’t that look

good.

● We need a way to
evaluate how well
it does besides
error.

 39

Coefficient of determination
(R-squared)

● Measures the total variation of the dependent variable
that is captured by the model.

● Score of 1 means perfectly encapsulated.

R2=1−SSE
SStot

=
∑ (y i− ŷ)2

∑ (y i− ȳ)2

 40

The result

 41

Closed form—so done?
● The closed form is expensive to compute if you have a

lot of data. Imaging 10,000 data points.

● We can instead look at the data and infer what would
be the best direction to improve our performance.

– This is called gradient descent.

 42

Gradient Descent
● We first need to create a user-defined cost function that

 quantifies how “wrong” a prediction is.

J (m,b)=SSE
Cost function as a function of m and b

J (m,b)= 1
2n

SSE= 1
2n∑ (y i−m∗x i−b)2

 43

Take derivative relative to each
param to know dir of descent.

∂ J
∂m

=− 1
n∑ x i(y i−m∗x i−b)

∂ J
∂b

=− 1
n∑ y i−m∗x i−b

 44

The result

 45

 46

Lingo
● Hyperparametres are variables that are not learned but

defined by the user (the lr and num epochs).

● Epoch: single pass-through all of the data.

 47

Multiple Regression
DSfS 191-202

 48

What if we have more than 1
feature?

● We cannot use simple linear regression, as we predict a
value based on a single independent variable.

● We need a new formula.

ŷ=α+β 1∗x 1+β2∗x2+...+βk∗xk

ŷ=m∗x+b

Feature 1 Feature k

 49

General formula
ŷ i=α+β 1∗x i , 1+β2∗x i ,2+...+βk∗x i ,k

ŷ=α+X β

ŷ=[1 ; X] β̀ import numpy as np

def predict(X, beta):
 return np.matmul(X, beta)Beta needs another

dimension to do this

 50

We can still use SSE
● But our input data needs to follow three restrictions:

– Each feature should not be perfectly correlated to
another (e.g Celsius and Fahrenheit).

– You need to have more data than features.

– All columns in matrix should be linearly
independent.

 51

The gradient stay very similar

∂ J
∂ β j

=− 1
n∑i

n
x i , j(y i−β j∗x i , j)

J (β j)=
1

2n
SSE j

Can vectorise as

∇ β J=− 1
n
XT (y− ŷ) ŷ=X β

 52

General training paradigm
def fit(X, y):
 # define beta, num_epochs, batch_size, lr

 with tqdm.trange(num_epochs) as t:
 for _ in t:
 # This is an epoch
 for batch_idx in range(0, X.shape[0], batch_size):
 # This is a step (going through a batch)
 X_batch = X[batch_idx:batch_idx+batch_size]
 y_batch = y[batch_idx:batch_idx+batch_size]
 grad = gradient(X_batch, y_batch, beta)
 beta = beta - lr * grad

 epoch_loss = np.mean(squared_error(X, y, beta))
 t.set_description(f"Loss: {epoch_loss:.4f}")

 return beta, losses

Useful external
library that show
progress

 53

Result

 54

Hyperparametre Tuning
● Domain expert selection

● Manual Search (Trial and error)

● Grid search

● Random search

● Bayesian optimisation (advanced)

 55

Is there a library?

● Scikit-learn implements many data science tools so that
you do not need to re-implement from scratch.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

