
INFO5002: Intro to Python for Info Sys
Week 12

Slides created by: Zachary Doucet

 2

Week 12
I. Regularisation

II. Logistic Regression

III. Decision Trees

 3

Review

 4

Basics of ML
● What a model is.

● How to collect and break data for training.

● How to evaluate binary classification.

● How to find a closed-form solution.

● How to find an open-form solution for gradient descent.

 5

Linear regression
def predict(x, m, b):
 return m * x + b

∂ J
∂m

=− 1
n∑ x i(y i−m∗x i−b)

∂ J
∂b

=− 1
n∑ y i−m∗x i−b

y=m∗x+b

 6

Multiple Regression
● When you have more than one feature.

ŷ=α+β 1∗x 1+β2∗x2+...+βk∗xk

Feature 1 Feature k

∇ β J=− 1
n
XT (y− ŷ) ŷ=X β

 7

Regularisation
DSfS 200-201

 8

What you may encounter
1. Overfitting as you use more features.

2. Complexity in understanding the model as you use more
features.

 9

Regularization
● Technique that punishes the larger the weights are.

Excluding the constant.

● Ridge Regression: penalty proportional to the sum of
the squares of the weights. Good for shrinking.

● Lasso Regression: penalty proportional to the sum of
absolute weights. Good for creating sparse model.

 10

Ridge Regression

ridge=∑ βi
2 ∇ β ridge={ β0

2α β 1

...
2α βd

}
Ridge coefficient

 11

R^2: 0.4262929416047012
Features:
- Base: 0.0038808773033996847
- crim: -0.09846100594513182
- zn: 0.060717048422293404
- indus: 0.0548379972900202
- chas: 0.07778463840639091
- nox: 0.1208480722824499
- rm: 2.0428558245834174
- age: 0.06346593521553487
- dis: -0.36749548163088236
- rad: 0.1341659389097766
- tax: 0.001558819237903661
- ptratio: 0.22002054138271926
- black: 0.014885991236595288
- lstat: -0.6611153308384818

Results
R^2: 0.6836432580624692
Features:
- Base: 4.672601277149279
- crim: -0.15711983546272634
- zn: 0.038691170336494225
- indus: 0.017075882217822292
- chas: 1.2524062926091726
- nox: 1.459931933862347
- rm: 4.782462447638699
- age: 0.001123772489480381
- dis: -0.7628326393125271
- rad: 0.20204237541852388
- tax: -0.007919294822269869
- ptratio: -0.32660600167865195
- black: 0.006932403221789192
- lstat: -0.5240291117290363

 12

Lasso Regression

lasso=∑|βi| This derivative is a bit difficult.
Essentially each feature is +1, -1, or [-1, 1]

 13

Logistic Regression
DSfS 203-214

 14

What if we want our output
● To be a probability or between [0, 1]?

● Our simple and multiple linear regression can give us
arbitrarily large and small values.

● We need to use a special function.

 15

Logistic Function

● As x increases, e^-x gets smaller => closer to 1.

● As x decreases, e^-x gets bigger => closer to 0.

logistic (x)= 1
1+e−x

def logistic(x):
return 1.0 / (1 + math.exp(-x))

 16

Convenient derivative

d
dx

logistic (x)=logistic (x)∗(1−logistic (x))

def logistic_grad(x):
y = logistic(x)
return y * (1 - y)

 17

Logistic Regression

ŷ=f (X β)

def predict(X, beta):
m = np.matmul(X, beta)
return logistic(m)

Where f is the logistic function

 18

Instead of minimising error
● We can maximise the likelihood.

● Since we use gradient descent we will minimise the
negative log likelihood.

L(y |X , β)=f (X β)y (1−f (X β))1− y

logL(y |X , β)= y logf (X β)+(1− y)log(1−f (X β))

 19

Oh gradients
∂

∂ β j
−L(y | x , β)=−(y−f (x⋅β))∗x [j]

Vector (not matrix)

∇ β−L(y | x , β)={−(y−f (x⋅β))∗x [0]
−(y−f (x⋅β))∗x [1]

...
−(y−f (x⋅β))∗x [d]

}

 20

Independent samples
● Assuming each sample is independent then the overall

likelihood is just the multiplication of each.

● Then for log-likelihood it is the addition.

∇ β−L(y |X , β)={−(y−f (x⋅β))∗x0,0

−(y−f (x⋅β))∗x0,1

...
−(y−f (x⋅β))∗x0 ,d

}+...+{−(y−f (x⋅β))∗xn ,0

−(y−f (x⋅β))∗xn , 1

...
−(y−f (x⋅β))∗xn ,d

}

 21

Loss as negative log likelihodd
● Training on Iris dataset where “setosa” is 0 and

“versicolor” is 1, and using pos prob of 0.5—I get 100%
accuracy.

The positive probability
is the cutoff where if
predicted >= pos prob
then we evaluate as 1.

def loss(self, X, y):
y_pred = self.predict(X)

 epsilon = 1e-7 # Avoid log(0)
 return -np.mean(y * np.log(y_pred + epsilon) +
 (1 - y) * np.log(1 - y_pred + epsilon))

 22

Recap
● When we have a binary decision then logistic regression

is the solution.

● Make sure to set an appropriate pos prob threshold.

 23

Decision Trees
DSfS 215-225

 24

How do we make decisions?
● Usually we start by looking at one variable and then

based on some condition you either do something or
another thing.

● If it is snowing, I would wear a winter jacket; if it is raining,
a rain jacket; if it is neither but below 0C, I would wear a
winter jacket; if below 10C, a rain jacket; if not anything,
then no jacket.

 25

As a decision tree

 26

But not manually!
● What if we create a learned algorithm to create these

decision trees and create decisions by itself?!

● Nice because then we can give the decisions to a human
(human readable), to evaluate.

● Works on numeric and categorical features. No need to
numerically encode.

 27

We want good decisions.
● Good decisions are able to split up possibilities in a

balanced way. Think of Akinator.

● We can use entropy to represent how spread the data is.
p_i is proportion of class_i. The more spread, the less
certain.

H(s)=−p1 log2p1−...−pn log2pn

 28
def entropy(ps):
 return np.sum(-ps * np.log2(ps))

 29

To know how good a split is
● We can weighted sum the entropies of each subset.

Where q_i is the proportion of samples in S_i.

● Smaller is better.

H=q1H(S 1)+...+qmH(Sm)

 30

ID3
● If data all have same label => create leaf node of that label.

● If list of attributes (what to split on) is empty => create leaf node
that predicts the most popular label.

● If not empty try to partition by each attribute.

– Choose the one with lowest entropy.

– Add decision node based on attribute.

– Recurse on each partitioned subset on remaining attributes.

 31

Basic data structures

class Node:
 def __init__(self, key):
 self.key = key
 self.children = {}

class Leaf:
 def __init__(self, val):
 self.val = val

Represents our question we holdRepresents our possible output

 32

 def build_tree(self, data, attributes):
 if len(data) == 0:

return self.default # no data
 if len(data.unique()) == 1:

return Leaf(data["label"][0]) # all the same (lowest entropy)
 if len(attributes) == 0:
 return Leaf(data["label"].mode())

 entropies = [self.entropy_partition_by_attribute(data, attribute)
 for attribute in attributes]
 min_idx = entropies.index(min(entropies))
 best_attribute = attributes[min_idx]
 children = self.split_by_attribute(data, best_attribute)
 node = Node(best_attribute) # create a new decision node
 new_attributes = [attribute for attribute
 in attributes if attribute != best_attribute] # remove what we used
 # recurse over each child

for child in children:
 node.children[child] = self.build_tree(children[child], new_attributes)

return node

 33

Numerical hack
● Given that two numbers have infinite points between

them you can subdivide the max – min by a certain
amount as your possible classes.

 34

Overview
● Decision trees are nice because they are easily

explainable and human readable.

● They can work with both categorical and numerical
values.

● They struggle with overfitting.

 35

Let’s practice
● On the Iris dataset (on Canvas) try to train both a Logistic

Regression and a Decision Tree using scikit-learn
LogisticRegression and scikit-learn DecisionTreeClassifier.

● Choose any two of the flower species and assign one as 0
and the other as 1. In fact for Decision Tree’s you do not
even need to do the mapping (still keep the same two
species for consistency).

 36

Perceptron
DSfS 227-229

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

