INFO5002: Intro to Python for Info Sys
Week 12

Northeastern
University

Slides created by: Zachary Doucet

|. Regularisation
ll. Logistic Regression

I1l. Decision Trees

Review

Basics of ML

What a model is.

How to collect and break data for training.
How to evaluate binary classification.

How to find a closed-form solution.

How to find an open-form solution for gradient descent.

Linear regression

y:m*x+b def predict(x, m, b):

return m X b

()

oJ 1
= X(V.—mxXx.—b
am nz I(yl /)

o0J 1
e = —m%xXx.—b
ab nzyl /

Multiple Regression

* When you have more than one feature.

j/:a+lB1*X1+IBZ*X2+...+IBk*Xk

T T

Feature T Feature k

Vyi=—=X'(y-y) y=XP

Regularisation

DSfS 200-201

What you may encounter

1. Overfitting as you use more features.

2. Complexity in understanding the model as you use more

features.

Regularization

* Technique that punishes the larger the weights are.

Excluding the constant.

* Ridge Regression: penalty proportional to the sum of

the squares of the weights.

* Lasso Regression: penalty proportional to the sum of

absolute weights.

Ridge Regression

idge=Y. g7 Vjridge=/2%F1|

Ridge coefficient

10

R"2: 0.6836432580624692 R®2: 0.4262929416047012
Features: Features:
Base: 4.672601277149279 Base: 0.0038808773033996847
crim: -0.15711983546272634 crim: -0.09846100594513182
zn: 0.038691170336494225 Zn: 0.060717048422293404
indus: 0.017075882217822292 indus: 0.0548379972900202

chas: 1.2524062926091726 chas: 0.07778463840639091
nox: 1.459931933862347 nox: 0.1208480722824499

rm: 4.782462447638699 rm: 2.0428558245834174

age: 0.001123772489480381 age: 0.06346593521553487
dis: -0.7628326393125271 dis: -0.36749548163088236
rad: 0.20204237541852388 rad: 0.1341659389097766

tax: -0.007919294822269869 tax: 0.001558819237903661
ptratio: -0.32660600167865195 ptratio: 0.22002054138271926
black: 0.006932403221789192 black: 0.014885991236595288
lstat: -0.5240291117290363 lstat: -0.6611153308384818

Lasso Regression

jasso=Y. |B|

This derivative is a bit difficult.

Essentially each feature is +1, -1, or [-1, 1]

12

Logistic Regression

DSTS 203-214

13

What if we want our output

* To be a probability or between [0, 1]7?

 Our simple and multiple linear regression can give us

arbitrarily large and small values.

* We need to use a special function.

14

Logistic Function

def logistic(x):

/OgiStiC(X): _x return 1.0 / (1 + math.exp(-x))

1+e

* As X iIncreases, en-x gets smaller => closer to 1.

* As X decreases, en-x gets bigger => closer to O.

15

Convenient derivative

% logistic(x)=logistic(x)x*(1—logistic(x))

def logistic_grad(x):

y = logistic(x)
return y (1 -vy)

16

Logistic Regression

y=f(Xp)

Where f is the logistic function

def predict(X, beta):

m = np.matmul(X, beta)
return logistic(m)

17

Instead of minimising error

e \WWe can maximise the likelihood.

L(y1X,B)=f(XB) (1—=F(XB))™

logL(y|X,B)=ylogf(XB)+(1-y)log(1-f (X B))

e Since we use gradient descent we will minimise the

negative log likelihood.

18

Oh gradients

0B,

VB_L(ylxrﬁ):

O —L(y|x,B)=—(y—F(x-B))xx[J]

!

Vector (not matrix)

(\

—(y—=f(x-B))xx[O]
—(y=f(x-B))xx[1]

~(y—f (x-B)*x[d]

19

Independent samples

« Assuming each sample is independent then the overall

likelihood is just the multiplication of each.

* Then for log-likelihood it is the addition.

(

Vﬁ_L(ylxr:B):

\

~(y—F(x-B))xq 4

—(y—F(x-B))*Xg5.
_<y_f(X'B))*Xo,1

[

J

\

\

—(y—f(X-B))*Xn,O
_(y_f<X’,B))*Xn,1

—(y—F(x-B))*x, ,

/

20

Loss as negative log likelihodd

* Training on Iris dataset where “setosa” is O and

“versicolor” is 1, and using pos prob of 0.5—I| get 100%

accuracy.
The positive probability
Is the cutoff where if
504} predicted >= pos prob
then we evaluate as 1.

def loss(self, X, y): 5 2000 4000 6000 8000 10000
y_pred = self.predict(X)

Epoch

epsilon = 1le-7 # Avoid log(0)
return -np.mean(y * np.log(y_pred + epsilon)
(1 - y) » np.log(1 - y_pred + epsilon))

Recap

* When we have a binary decision then logistic regression

Is the solution.

* Make sure to set an appropriate pos prob threshold.

22

Decision Trees

DSTFS 215-225

23

How do we make decisions?

* Usually we start by looking at one variable and then

based on some condition you either do something or

another thing.

 |If it issnowing, | would wear a winter jacket; if it is raining,
a rain jacket; if it is neither but below OC, | would wear a

winter jacket; if below 10C, a rain jacket; if not anything,

then no jacket.

24

As a decision tree

Is snowing?

e @
h 4

Winter coat

u

Winter coat

Rain coat

25

But not manually!

 What if we create a learned algorithm to create these

decision trees and create decisions by itself?!

* Nice because then we can give the decisions to a human

(human readable), to evaluate.

* Works on numeric and categorical features. No need to

numerically encode.

26

We want good decisions.

 Good decisions are able to split up possibilities in a

balanced way. Think of Akinator.

* We can use entropy to represent how spread the data is.
p_I IS proportion of class_Ii. The more spread, the less

certain.

H(s)=-p,log,p,—..—p, log,p.

27

0.5 4

0.4

0.3 A

-plogp (base 2)

0.1 +

0.0

T T T
0.0 0.2 0.4

def entropy(ps):

T
0.6

return np.sum(-ps

T
0.8

np.log2(ps))

To know how good a split is

 We can weighted sum the entropies of each subset.

Where g_i is the proportion of samples in S_i.

H=g,H(S,)+.+q_H(S)

e Smaller is better.

29

ID3

If data all have same label => create leaf node of that label.

If list of attributes (what to split on) is empty => create leaf node

that predicts the most popular label.

If not empty try to partition by each attribute.
- Choose the one with lowest entropy.
- Add decision node based on attribute.

- Recurse on each partitioned subset on remaining attributes.

30

Basic data structures

class Leaf:
def init_ (self, val):

self.val val

Represents our possible output

class Node:
def _init_ (self, key):

self.key key
self.children {}

Represents our question we hold

N
\\\
Y Is sn:
N
\\\
&
W

P ,
owing?)

Y

&

J\

31

def build tree(self, data, attributes):
if len(data) 0:
return self.default # no data
if len(data.unique()) 1:
return Leaf(data["label"][0]) # all the same (lowest entropy)
if len(attributes) 0:
return Leaf(data["label"].mode())

entropies = [self.entropy_partition_by attribute(data, attribute)
for attribute attributes]
min_idx = entropies.index(min(entropies))
best_attribute = attributes[min_idx]
children self.split_by attribute(data, best _attribute)
node Node(best attribute) # create a new decision node
new_attributes [attribute for attribute
attributes 1f attribute best _attribute] # remove what we used
recurse over each child
for child children:
node.children[child] self.build _tree(children[child], new_attributes)

return node

Numerical hack

 Given that two numbers have infinite points between
them you can subdivide the max — min by a certain

amount as your possible classes.

33

Overview

Decision trees are nice because they are easily

explainable and human readable.

They can work with both categorical and numerical

values.

They struggle with overfitting.

34

Let’s practice

 On the Iris dataset (on Canvas) try to train both a Logistic

Regression and a Decision Tree using scikit-learn

LogisticRegression and scikit-learn DecisionTreeClassifier.

 Choose any two of the flower species and assign one as O
and the other as 1. In fact for Decision Tree's you do not
even need to do the mapping (still keep the same two

species for consistency).

35

Perceptron

DSfS 227-229

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

