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Week 12
I. Regularisation

II. Logistic Regression

III. Decision Trees
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Review
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Basics of ML
● What a model is.

● How to collect and break data for training.

● How to evaluate binary classification.

● How to find a closed-form solution.

● How to find an open-form solution for gradient descent.
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Linear regression
def predict(x, m, b): 
    return m * x + b

∂ J
∂m

=− 1
n∑ x i( y i−m∗x i−b)

∂ J
∂b

=− 1
n∑ y i−m∗x i−b

y=m∗x+b
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Multiple Regression
● When you have more than one feature.

ŷ=α+β 1∗x 1+β2∗x2+...+βk∗xk

Feature 1 Feature k

∇ β J=− 1
n
XT ( y− ŷ ) ŷ=X β
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Regularisation
DSfS 200-201
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What you may encounter
1.  Overfitting as you use more features.

2. Complexity in understanding the model as you use more 
features.
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Regularization
● Technique that punishes the larger the weights are. 

Excluding the constant.

● Ridge Regression: penalty proportional to the sum of 
the squares of the weights.  Good for shrinking.

● Lasso Regression: penalty proportional to the sum of 
absolute weights. Good for creating sparse model.
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Ridge Regression

ridge=∑ βi
2 ∇ β ridge={ β0

2α β 1

...
2α βd

}
Ridge coefficient
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R^2: 0.4262929416047012
Features: 
- Base: 0.0038808773033996847 
- crim: -0.09846100594513182 
- zn: 0.060717048422293404 
- indus: 0.0548379972900202 
- chas: 0.07778463840639091 
- nox: 0.1208480722824499 
- rm: 2.0428558245834174 
- age: 0.06346593521553487 
- dis: -0.36749548163088236 
- rad: 0.1341659389097766 
- tax: 0.001558819237903661 
- ptratio: 0.22002054138271926 
- black: 0.014885991236595288 
- lstat: -0.6611153308384818

Results
R^2: 0.6836432580624692
Features:
- Base: 4.672601277149279
- crim: -0.15711983546272634
- zn: 0.038691170336494225
- indus: 0.017075882217822292
- chas: 1.2524062926091726
- nox: 1.459931933862347
- rm: 4.782462447638699
- age: 0.001123772489480381
- dis: -0.7628326393125271
- rad: 0.20204237541852388
- tax: -0.007919294822269869
- ptratio: -0.32660600167865195
- black: 0.006932403221789192
- lstat: -0.5240291117290363
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Lasso Regression

lasso=∑|βi| This derivative is a bit difficult.
Essentially each feature is +1, -1, or [-1, 1]
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Logistic Regression
DSfS 203-214
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What if we want our output
● To be a probability or between [0, 1]?

● Our simple and multiple linear regression can give us 
arbitrarily large and small values.

● We need to use a special function.
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Logistic Function

● As x increases, e^-x gets smaller => closer to 1.

● As x decreases, e^-x gets bigger => closer to 0.

logistic (x )= 1
1+e−x

def logistic(x):
return 1.0 / (1 + math.exp(-x))
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Convenient derivative

d
dx

logistic (x )=logistic (x )∗(1−logistic (x ))

def logistic_grad(x):
y = logistic(x)
return y * ( 1 - y) 
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Logistic Regression

ŷ=f (X β)

def predict(X, beta):
m = np.matmul(X, beta)
return logistic(m)

Where f is the logistic function
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Instead of minimising error
● We can maximise the likelihood.

● Since we use gradient descent we will minimise the 
negative log likelihood. 

L( y |X , β)=f (X β)y (1−f (X β))1− y

logL( y |X , β)= y logf (X β)+(1− y )log(1−f (X β))
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Oh gradients
∂

∂ β j
−L( y | x , β)=−( y−f (x⋅β))∗x [ j ]

Vector (not matrix)

∇ β−L( y | x , β)={−( y−f (x⋅β))∗x [0]
−( y−f (x⋅β))∗x [1]

...
−( y−f (x⋅β))∗x [d ]

}
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Independent samples
● Assuming each sample is independent then the overall 

likelihood is just the multiplication of each.

● Then for log-likelihood it is the addition.

∇ β−L( y |X , β)={−( y−f (x⋅β))∗x0,0

−( y−f (x⋅β))∗x0,1

...
−( y−f (x⋅β))∗x0 ,d

}+...+{−( y−f (x⋅β))∗xn ,0

−( y−f (x⋅β))∗xn , 1

...
−( y−f (x⋅β))∗xn ,d

}
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Loss as negative log likelihodd
● Training on Iris dataset where “setosa” is 0 and 

“versicolor” is 1, and using pos prob of 0.5—I get 100% 
accuracy.

The positive probability 
is the cutoff where if 
predicted >= pos prob 
then we evaluate as 1.

def loss(self, X, y):
y_pred = self.predict(X)

       epsilon = 1e-7  # Avoid log(0)
       return -np.mean(y * np.log(y_pred + epsilon) + 
       (1 - y) * np.log(1 - y_pred + epsilon))
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Recap
● When we have a binary decision then logistic regression 

is the solution.

● Make sure to set an appropriate pos prob threshold. 
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Decision Trees
DSfS 215-225
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How do we make decisions?
● Usually we start by looking at one variable and then 

based on some condition you either do something or 
another thing.

● If it is snowing, I would wear a winter jacket; if it is raining, 
a rain jacket; if it is neither but below 0C, I would wear a 
winter jacket; if below 10C, a rain jacket; if not anything, 
then no jacket.
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As a decision tree
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But not manually!
● What if we create a learned algorithm to create these 

decision trees and create decisions by itself?!

● Nice because then we can give the decisions to a human 
(human readable), to evaluate.

● Works on numeric and categorical features. No need to 
numerically encode.
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We want good decisions.
● Good decisions are able to split up possibilities in a 

balanced way. Think of Akinator.

● We can use entropy to represent how spread the data is. 
p_i is proportion of class_i. The more spread, the less 
certain.

H(s)=−p1 log2p1−...−pn log2pn
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def entropy(ps):
    return np.sum(-ps * np.log2(ps))
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To know how good a split is
● We can weighted sum the entropies of each subset. 

Where q_i is the proportion of samples in S_i.

● Smaller is better.

H=q1H(S 1)+...+qmH(Sm)
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ID3
● If data all have same label => create leaf node of that label.

● If list of attributes (what to split on) is empty => create leaf node 
that predicts the most popular label.

● If not empty try to partition by each attribute.

– Choose the one with lowest entropy.

– Add decision node based on attribute.

– Recurse on each partitioned subset on remaining attributes.
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Basic data structures

class Node:
    def __init__(self, key):
        self.key = key
        self.children = {}

class Leaf:
    def __init__(self, val):
        self.val = val 

Represents our question we holdRepresents our possible output
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    def build_tree(self, data, attributes):
        if len(data) == 0:

return self.default # no data
        if len(data.unique()) == 1:

return Leaf(data["label"][0]) # all the same (lowest entropy)
        if len(attributes) == 0:
            return Leaf(data["label"].mode())

        entropies = [self.entropy_partition_by_attribute(data, attribute) 
             for attribute in attributes]
        min_idx = entropies.index(min(entropies))
        best_attribute = attributes[min_idx]
        children = self.split_by_attribute(data, best_attribute) 
        node = Node(best_attribute) # create a new decision node
        new_attributes = [attribute for attribute 
             in attributes if attribute != best_attribute] # remove what we used
       # recurse over each child 

for child in children:
            node.children[child] = self.build_tree(children[child], new_attributes)
        

return node
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Numerical hack
● Given that two numbers have infinite points between 

them you can subdivide the max – min by a certain 
amount as your possible classes.
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Overview
● Decision trees are nice because they are easily 

explainable and human readable.

● They can work with both categorical and numerical 
values.

● They struggle with overfitting.
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Let’s practice
● On the Iris dataset (on Canvas) try to train both a Logistic 

Regression and a Decision Tree using scikit-learn 
LogisticRegression and scikit-learn DecisionTreeClassifier.

● Choose any two of the flower species and assign one as 0 
and the other as 1. In fact for Decision Tree’s you do not 
even need to do the mapping (still keep the same two 
species for consistency).
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Perceptron
DSfS 227-229
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