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Review



Basics of ML

What a model is.

How to collect and break data for training.
How to evaluate binary classification.

How to find a closed-form solution.

How to find an open-form solution for gradient descent.



Linear regression

y:m*x+b def predict(x, m, b):

return m X b
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Multiple Regression

* When you have more than one feature.

j/:a+lB1*X1+IBZ*X2+...+IBk*Xk
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Feature T Feature k
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Regularisation

DSfS 200-201



What you may encounter

1. Overfitting as you use more features.

2. Complexity in understanding the model as you use more

features.



Regularization

* Technique that punishes the larger the weights are.

Excluding the constant.

* Ridge Regression: penalty proportional to the sum of

the squares of the weights.

* Lasso Regression: penalty proportional to the sum of

absolute weights.



Ridge Regression

idge=Y. g7 Vjridge=/2%F1|

Ridge coefficient
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R"2: 0.6836432580624692 R®2: 0.4262929416047012
Features: Features:
Base: 4.672601277149279 Base: 0.0038808773033996847
crim: -0.15711983546272634 crim: -0.09846100594513182
zn: 0.038691170336494225 Zn: 0.060717048422293404
indus: 0.017075882217822292 indus: 0.0548379972900202

chas: 1.2524062926091726 chas: 0.07778463840639091
nox: 1.459931933862347 nox: 0.1208480722824499

rm: 4.782462447638699 rm: 2.0428558245834174

age: 0.001123772489480381 age: 0.06346593521553487
dis: -0.7628326393125271 dis: -0.36749548163088236
rad: 0.20204237541852388 rad: 0.1341659389097766

tax: -0.007919294822269869 tax: 0.001558819237903661
ptratio: -0.32660600167865195 ptratio: 0.22002054138271926
black: 0.006932403221789192 black: 0.014885991236595288
lstat: -0.5240291117290363 lstat: -0.6611153308384818




Lasso Regression

jasso=Y. |B|

This derivative is a bit difficult.

Essentially each feature is +1, -1, or [-1, 1]
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Logistic Regression

DSTS 203-214
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What if we want our output

* To be a probability or between [0, 1]7?

 Our simple and multiple linear regression can give us

arbitrarily large and small values.

* We need to use a special function.
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Logistic Function

def logistic(x):

/OgiStiC(X): _x return 1.0 / (1 + math.exp(-x))

1+e

* As X iIncreases, en-x gets smaller => closer to 1.

* As X decreases, en-x gets bigger => closer to O.
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Convenient derivative

% logistic(x)=logistic(x)x*(1—logistic(x))

def logistic_grad(x):

y = logistic(x)
return y (1 -vy)
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Logistic Regression

y=f(Xp)

Where f is the logistic function

def predict(X, beta):

m = np.matmul(X, beta)
return logistic(m)

17



Instead of minimising error

e \WWe can maximise the likelihood.

L(y1X,B)=f(XB) (1—=F(XB))™

logL(y|X,B)=ylogf(XB)+(1-y)log(1-f (X B))

e Since we use gradient descent we will minimise the

negative log likelihood.
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Oh gradients

0B,

VB_L(ylxrﬁ):

O —L(y|x,B)=—(y—F(x-B))xx[J]

!

Vector (not matrix)

( \

—(y—=f(x-B))xx[O]
—(y=f(x-B))xx[1]

~(y—f (x-B)*x[d]
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Independent samples

« Assuming each sample is independent then the overall

likelihood is just the multiplication of each.

* Then for log-likelihood it is the addition.

(

Vﬁ_L(ylxr:B):

\

~(y—F(x-B))xq 4

—(y—F(x-B))*Xg5.
_<y_f(X'B))*Xo,1

[

J

\

\

—(y—f(X-B))*Xn,O
_(y_f<X’,B))*Xn,1

—(y—F(x-B))*x, ,

/
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Loss as negative log likelihodd

* Training on Iris dataset where “setosa” is O and

“versicolor” is 1, and using pos prob of 0.5—I| get 100%

accuracy.
The positive probability
Is the cutoff where if
504} predicted >= pos prob
then we evaluate as 1.

def loss(self, X, y): 5 2000 4000 6000 8000 10000
y_pred = self.predict(X)

Epoch

epsilon = 1le-7 # Avoid log(0)
return -np.mean(y * np.log(y_pred + epsilon)
(1 - y) » np.log(1 - y_pred + epsilon))




Recap

* When we have a binary decision then logistic regression

Is the solution.

* Make sure to set an appropriate pos prob threshold.
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Decision Trees

DSTFS 215-225
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How do we make decisions?

* Usually we start by looking at one variable and then

based on some condition you either do something or

another thing.

 |If it issnowing, | would wear a winter jacket; if it is raining,
a rain jacket; if it is neither but below OC, | would wear a

winter jacket; if below 10C, a rain jacket; if not anything,

then no jacket.
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As a decision tree

Is snowing?

e @
h 4

Winter coat

u

Winter coat

Rain coat
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But not manually!

 What if we create a learned algorithm to create these

decision trees and create decisions by itself?!

* Nice because then we can give the decisions to a human

(human readable), to evaluate.

* Works on numeric and categorical features. No need to

numerically encode.
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We want good decisions.

 Good decisions are able to split up possibilities in a

balanced way. Think of Akinator.

* We can use entropy to represent how spread the data is.
p_I IS proportion of class_Ii. The more spread, the less

certain.

H(s)=-p,log,p,—..—p, log,p.
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def entropy(ps):

T
0.6

return np.sum(-ps

T
0.8

np.log2(ps))




To know how good a split is

 We can weighted sum the entropies of each subset.

Where g_i is the proportion of samples in S_i.

H=g,H(S,)+.+q_H(S )

e Smaller is better.
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ID3

If data all have same label => create leaf node of that label.

If list of attributes (what to split on) is empty => create leaf node

that predicts the most popular label.

If not empty try to partition by each attribute.
- Choose the one with lowest entropy.
- Add decision node based on attribute.

- Recurse on each partitioned subset on remaining attributes.
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Basic data structures

class Leaf:
def init_ (self, val):

self.val val

Represents our possible output

class Node:
def _init_ (self, key):

self.key key
self.children {}

Represents our question we hold
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def build tree(self, data, attributes):
if len(data) 0:
return self.default # no data
if len(data.unique()) 1:
return Leaf(data["label"][0]) # all the same (lowest entropy)
if len(attributes) 0:
return Leaf(data["label"].mode())

entropies = [self.entropy_partition_by attribute(data, attribute)
for attribute attributes]
min_idx = entropies.index(min(entropies))
best_attribute = attributes[min_idx]
children self.split_by attribute(data, best _attribute)
node Node(best attribute) # create a new decision node
new_attributes [attribute for attribute
attributes 1f attribute best _attribute] # remove what we used
# recurse over each child
for child children:
node.children[child] self.build _tree(children[child], new_attributes)

return node



Numerical hack

 Given that two numbers have infinite points between
them you can subdivide the max — min by a certain

amount as your possible classes.
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Overview

Decision trees are nice because they are easily

explainable and human readable.

They can work with both categorical and numerical

values.

They struggle with overfitting.
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Let’s practice

 On the Iris dataset (on Canvas) try to train both a Logistic

Regression and a Decision Tree using scikit-learn

LogisticRegression and scikit-learn DecisionTreeClassifier.

 Choose any two of the flower species and assign one as O
and the other as 1. In fact for Decision Tree's you do not
even need to do the mapping (still keep the same two

species for consistency).
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Perceptron

DSfS 227-229
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