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Week 2

I. Recap

II. Operators

III. Functions

IV. Conditionals

V.  Recursion
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Recap
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Variables
● Variables act as labels that reference a saved data.

● 4 basic data types of: integers, floats, booleans, and strings.

x = 4

name dataassignment operator
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Can define an integer differently
● Base 10

● Binary or base 2

● Octet or base 8 

● Hexademical of base 16

170

0b10101010

0o252

0xAA
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Operators
[1], PCC 26-27
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Operators as action
● A process that performs an operation is an operator.

● Null operators:  

OP={o∣o :X→ Y }

∅={o∈OP∣o :X→ X }

Source: Wikimedia
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Arithmetic Operators
x = 4

# Addition

x = x + 1

# Subtraction
x = x - 2

# Multiplication

x = x * 4

# Division
x = x / 6
# Modulo
x = x % 2

What is x after each operation?
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Arithmetic Operators (Continued)
x = 3

# Exponential

x = x ** 3

# Floor division (int div)
x = x // 10

# Negation

x = -x

What is x after each operation?
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Bitwise Operators
x = 0b0101
y = 0b1001

# And

z = x & y

# Or
z = x | y

# Exclusive Or

z = x ^ y

# Inversion
z = ~x
# Left and right shift
z = x << 2
z = y >> 3

What is z after each operation?

[2]
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Comparison Operators
x = 10
y = 12

# Equal
z = x == y

# Difference
z = x != y

# Greater than

z = x > y

# Less than
z = x < y

# Ordering and equal
z = x >= y
z = x <= y

What is z after each operation?
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Logical Operators
x = 10
y = 12
z = 10

# And
a = x == y and x == z

# Or
a = x == y or x == z

# Not
a = not x == y and x == z

What is a after each operation?
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Don’t forget operator precedence!
● The general rules of operator precedence from math 

applies to python. Thus, use parentheses to be explicit.

● Can be a common source of bugs!

1 + 6 / 2  !=  (1+6) / 2
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Don’t forget that floats are 
representational!

● Performing operations on floats may not yield the 
expected output.

● Can be a common source of bugs!

# Try
0.1 + 0.20.30000000000000004
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Operator shorthand
Most operators support a shorthand for operations 
performed on the assigned variable. 

x = x + 1

x = x - 1

x = x * 2

x = x & 0b1 

x += 1

x -= 1 

x *= 2

x &= 0b1

Can be

turned
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String Operators
x = "Be yourself"
y = "everyone else is taken"

# Concatenation
z = x + "; " + y

# Contains
z = "else" in z

# Repetition
z = (x + ", ") * 2

What is z after each operation?
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Let’s practice
I. Let x be the addition of 2 and 5 together.

II. Let y be 4 multiplied by 2 to the power of 3.

III.  Let z be taken as the modulo of 1 added by 5 and 7 subtracted from 
3.

IV.  Let bit be the bitwise AND of 0b1010101010 with the bitwise 
inversion of 0b0101010101.

V. Let string be the string of “hello world” repeated 6 times while 
writing “hello world” only once in its instantiation.
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And some more
I. Let a be if the integer 4 is equal to the string 4.

II. Let b be if 3 is equal to 3.0.

III. Let c be if 2 to the power of 10 is less than 10 to the power 
of 3.

IV. Let d be if “y i” is in the string “today is friday”.

V. Let e be if 5 * 3 is not greater than 2 subtracted from 12. 
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Functions
PCC 129-155
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Functions as factories

A way to group operators 
together that can be executed 
on different data.

Source: Wikimedia

Source: Wikimedia
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Creating Functions

def add(argument_one, argument_two):
    return argument_one + argument_two

create function 
keyword

function name first argument second argument

return 
expression to 
caller

expression What is the value of x?

x = add(5, 4)
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Let’s practice
● Create the following functions:

I. get_greeting which returns “welcome to my store”.

II. print_greeting which prints “welcome to my store”.

III.  sub that takes two numbers and returns the subtraction of 
the second from the first.

IV.multiply_all that takes five numbers and returns the multiple 
of them all.
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Best Practices
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Make code readable
● Keep each line short in length. Never more than 100 

chars.

● Group similar lines together and leave a line break 
between logically different lines.

● Use comments to help explain confusing code. 
# This is a comment
x = 2

"""This is a multi-line comment
    that I can run as long 
    as I want """
x = 1
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Make code readable (Continued)
● Use descriptive names for variables and functions and 

not embeddings, mapping, or encodings. 
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Single Responsibility Principle
● One thing should do one thing; and do that thing very 

well.

● Each function should be responsible of a single logical 
idea.

● Break big functions into smaller reusable functions.

Tries to be
- Fridge
- Media Player
- Entertainment System
- Calendar
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Citations
[1] https://docs.python.org/3.13/library/operator.html

[2] https://en.wikipedia.org/wiki/Two's_complement

https://docs.python.org/3.13/library/operator.html
https://en.wikipedia.org/wiki/Two's_complement
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