
INFO5002: Intro to Python for Info Sys
Week 2

Slides created by: Zachary Doucet



 2

Week 2

I. Recap

II. Operators

III. Functions

IV. Conditionals

V.  Recursion



 3

Recap



 4

Variables
● Variables act as labels that reference a saved data.

● 4 basic data types of: integers, floats, booleans, and strings.

x = 4

name dataassignment operator



 5

Can define an integer differently
● Base 10

● Binary or base 2

● Octet or base 8 

● Hexademical of base 16

170

0b10101010

0o252

0xAA



 6

Operators
[1], PCC 26-27



 7

Operators as action
● A process that performs an operation is an operator.

● Null operators:  

OP={o∣o :X→ Y }

∅={o∈OP∣o :X→ X }

Source: Wikimedia



 8

Arithmetic Operators
x = 4

# Addition

x = x + 1

# Subtraction
x = x - 2

# Multiplication

x = x * 4

# Division
x = x / 6
# Modulo
x = x % 2

What is x after each operation?



 9

Arithmetic Operators (Continued)
x = 3

# Exponential

x = x ** 3

# Floor division (int div)
x = x // 10

# Negation

x = -x

What is x after each operation?



 10

Bitwise Operators
x = 0b0101
y = 0b1001

# And

z = x & y

# Or
z = x | y

# Exclusive Or

z = x ^ y

# Inversion
z = ~x
# Left and right shift
z = x << 2
z = y >> 3

What is z after each operation?

[2]



 11

Comparison Operators
x = 10
y = 12

# Equal
z = x == y

# Difference
z = x != y

# Greater than

z = x > y

# Less than
z = x < y

# Ordering and equal
z = x >= y
z = x <= y

What is z after each operation?



 12

Logical Operators
x = 10
y = 12
z = 10

# And
a = x == y and x == z

# Or
a = x == y or x == z

# Not
a = not x == y and x == z

What is a after each operation?



 13

Don’t forget operator precedence!
● The general rules of operator precedence from math 

applies to python. Thus, use parentheses to be explicit.

● Can be a common source of bugs!

1 + 6 / 2  !=  (1+6) / 2



 14

Don’t forget that floats are 
representational!

● Performing operations on floats may not yield the 
expected output.

● Can be a common source of bugs!

# Try
0.1 + 0.20.30000000000000004



 15

Operator shorthand
Most operators support a shorthand for operations 
performed on the assigned variable. 

x = x + 1

x = x - 1

x = x * 2

x = x & 0b1 

x += 1

x -= 1 

x *= 2

x &= 0b1

Can be

turned



 16

String Operators
x = "Be yourself"
y = "everyone else is taken"

# Concatenation
z = x + "; " + y

# Contains
z = "else" in z

# Repetition
z = (x + ", ") * 2

What is z after each operation?



 17

Let’s practice
I. Let x be the addition of 2 and 5 together.

II. Let y be 4 multiplied by 2 to the power of 3.

III.  Let z be taken as the modulo of 1 added by 5 and 7 subtracted from 
3.

IV.  Let bit be the bitwise AND of 0b1010101010 with the bitwise 
inversion of 0b0101010101.

V. Let string be the string of “hello world” repeated 6 times while 
writing “hello world” only once in its instantiation.



 18

And some more
I. Let a be if the integer 4 is equal to the string 4.

II. Let b be if 3 is equal to 3.0.

III. Let c be if 2 to the power of 10 is less than 10 to the power 
of 3.

IV. Let d be if “y i” is in the string “today is friday”.

V. Let e be if 5 * 3 is not greater than 2 subtracted from 12. 



 19

Functions
PCC 129-155



 20

Functions as factories

A way to group operators 
together that can be executed 
on different data.

Source: Wikimedia

Source: Wikimedia



 21

Creating Functions

def add(argument_one, argument_two):
    return argument_one + argument_two

create function 
keyword

function name first argument second argument

return 
expression to 
caller

expression What is the value of x?

x = add(5, 4)



 22

Let’s practice
● Create the following functions:

I. get_greeting which returns “welcome to my store”.

II. print_greeting which prints “welcome to my store”.

III.  sub that takes two numbers and returns the subtraction of 
the second from the first.

IV.multiply_all that takes five numbers and returns the multiple 
of them all.



 23

Best Practices



 24

Make code readable
● Keep each line short in length. Never more than 100 

chars.

● Group similar lines together and leave a line break 
between logically different lines.

● Use comments to help explain confusing code. 
# This is a comment
x = 2

"""This is a multi-line comment
    that I can run as long 
    as I want """
x = 1



 25

Make code readable (Continued)
● Use descriptive names for variables and functions and 

not embeddings, mapping, or encodings. 



 26

Single Responsibility Principle
● One thing should do one thing; and do that thing very 

well.

● Each function should be responsible of a single logical 
idea.

● Break big functions into smaller reusable functions.

Tries to be
- Fridge
- Media Player
- Entertainment System
- Calendar



 27

Citations
[1] https://docs.python.org/3.13/library/operator.html

[2] https://en.wikipedia.org/wiki/Two's_complement

https://docs.python.org/3.13/library/operator.html
https://en.wikipedia.org/wiki/Two's_complement

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

