
INFO5002: Intro to Python for Info Sys
Week 3

Slides created by: Zachary Doucet

 2

Week 3

I. Functions+

II. Recursion

III. Conditionals

IV. Loops

V. Advanced Data Types

VI. Popular Functions

 3

Recap

 4

Operators as action
● A process that performs an operation is an operator.

● Null operators:

OP={o∣o :X→ Y }

∅={o∈OP∣o :X→ X }

Source: Wikimedia

 5

Functions as factories

A way to group operators
together that can be executed
on different data.

Source: Wikimedia

Source: Wikimedia

 6

Creating Functions

def add(argument_one, argument_two):
 return argument_one + argument_two

create function
keyword function name

first argument second argument

return
expression to
caller expression What is the value of x?

x = add(5, 4)

Colon

Indent: TAB or
4 spaces (PEP8)

 7

As a recap, let’s write functions.
● Create the following functions:

I. can_vote takes in a person’s age and return if they are
eligible to vote in Canada (18).

II. calculate_interest that takes in last month’s balance (arg1)
and returns the amount of interest based on the interest
(assume already decimal) (arg2).

III. hypotenuse that takes two lengths of a right triangle and
returns the length of the hypotenuse.

 8

Functions+
PCC 133-135

 9

Additional functional features
● You can define a function’s argument(s) as optional by

providing a default value.

● If we want to not rely on argument positions when
calling a function we can use keyword arguments.

def increment(input, by=1):
return input + by

WARNING: When using default
values make sure that all non
default values appear before
in function’s signature.

def calculate_mortgage_payment(principal, downpayment, interest,
 is_fixed, term, amortisation):

...

calculate_mortgage_payment(principal=1_000_000, interest=0.052,
downpayment=45_000, term=3, amortisation=35, is_fixed=True)

 10

Higher Order Functions

● Functions usually return
data.

● What if we return a
function?

 11

Create and return a function

def create_greeting(person_name):
def tell_person(message):

print("Hey " + person_name + ". " + message)
return tell_person

x = create_greeting("Bobbie")
x("Want to join tomorrow?")
Hey Bobbie. Want to join tomorrow?
x("Don't forget class Friday!")
Hey Bobbie. Don't forget class Friday!

 12

Recursion

 13

What happens if I call myself?
 def countdown(t):

 print(t)

countdown(t-1)

 countdown(10)

10
9
...
-980

 File "<python-input-2>", line 3, in countdown

 countdown(t-1)

   ~~~~~~~~~^^^^^ 

 [Previous line repeated 988 more times] 

RecursionError: maximum recursion depth exceeded Source: Sergey Pykhonin



 14

Conditionals
PCC 71-85



 15

Conditionals protect the stack

if 4 == 2:
print("Here")

If keyword Conditional Colon

Indent: TAB or 4 spaces (PEP8)

Conditional
Block



 16

3 Different Conditional 
Statements

● if which executes its conditional block if its condition 
evaluates to True.

● elif acts like if but creates another execution path.

● else acts as a catch-all and executes its conditional 
block if it is reached. 



 17

x = 4
if x < 4:

print("Less than four")
elif x < 6:

print("Less than six")
elif x <= 12:

print("Less than or equal to 12")
elif x >= 13:

print("Greater than or equal to 13")
else:

print("I am something else")



 18

Let’s practice conditionals
● Create the following function:

I.  age_group which takes in an age and if less than 2 returns 
“baby”, if between 2 and 4 return “toddler”, if greater than 4 
and less than 12 return “kid”, if greater than or equal to 12 and 
less than 18 return “teen”, if greater than or equal to 18 and 
less than 65 return “adult”, if greater than or equal to 65 
return “senior”.



 19

And some more
● Create the following function:

I. even which takes a number and prints “is even” if it is even, 
otherwise “is odd”.

II. evenfy which takes a number and makes it even if it is odd 
by multiplying by 2.

III.  pair which takes in two numbers and prints “Paired” if both 
are even or if both are odd; otherwise, “Failed to Pair”.



 20

Let’s practice recursion
● Create the following functions:

I. countdown which will countdown from a given number 
down to 0.

II. factorial which returns the factorial of a given number.

III.  fibonacci which returns the i’th fibonacci number.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

