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Week 4
I. Loops

II.  Advanced Data Types
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Recap
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Higher Order Functions

● Functions usually return 
data.

● What if we return a 
function?
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Functions calling themselves

Source: Sergey Pykhonin

 def countdown(t):

 print(t)

countdown(t-1)
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Conditionals allow for branching

if 4 == 2:
print("Here")

If keyword Conditional Colon

Indent: TAB or 4 spaces (PEP8)

Conditional
Block
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Loops
PCC 113-127
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Loops reduce repetition
● We repeat a group of operations together under a loop 

to reduce re-writing.

● Let’s say we want to print “hello” five times without 
using the repetitions operator.

do block five times:
print("hello")

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")

But how?
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The while loop
● If we want to repeat a block of code while a condition is 

True then use while.

x = 0
while x < 5:

print("hello")
x += 1

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")
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Change the path
● You can change the executing path with break and 

continue. 

x = 0
while True:

print("hello")
x += 1
if x >= 5:

break

How many times does hello print?
5 and 3

x = 0
while x < 5:

x += 1
if x % 2 == 0:

continue
print("hello")
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Let’s practice
● Create the following function:

I.  print_hello_x which takes in an integer and prints “hello” 
integer number of times. Don’t use the repetition operator.

II. riemann_sum which takes in an integer and returns the sum of 
all numbers from 0 to the argument (including). Do not use the 
closed form.

III. riemann_sum_lower which takes in two integers and returns the 
sum of all the numbers between the first (including) to the 
second (including). Do not use closed form.
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And some more
● Create the following function:

I.  sum_even which given an input sums together all the 
numbers from 0 to the input (inclusive) that are even.

II. get_age which keeps asking for user input until the age is a 
valid human age (assume humans don’t live beyond 150y) 
and returns that age.
You can get user input with input.
You can turn a string into an int with int. 

x = input("This is the prompt")

x = int(x)
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Advanced Data Types
PCC 33-70 and 91-112
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Lists
● To hold a collection of data you can 

use lists.

– Todo list

– Bookshelf

– Roster

Source: Wikimedia
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Working with lists
● We can create a list with brackets.

● Lists hold items in a specific order.

● Use brackets to access items on a list.

● Can also use brackets to assign at a location.

● We can get the number of elements in a list with len.

x = []
y = [1, 2, 3]

0 1 2 index
z = [2, 3, 4]
z[1]

Watch out:
IndexError

q = ["a", "b", "c"]
q[2] = "f" 

x = [1, 8, 4, 2]
_len = len(x)
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Modifying lists
● We can add to the end of a list with append.

● We can add to a specific index with insert.

● We can delete at a specific index with del or pop.

● We can remove at the end with pop.

x = [1, 2]
x.append(3)

y = ["a", "c"]
y.insert(1, "b")

x = [1, 2, 3]
del x[0]

x = [1, 2, 3]
x.pop(0)or

x = [1, 2, 3]
x.pop()
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Modifying lists (continued)
● We can remove a specific value once with remove.

● We can get elements between two indices with slice.

x = [1, 8, 4, 2]
x.remove(8)

x = [1, 2, 3, 4, 5]
y = x[1:2]

inclusive exclusive
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Tuples
● Immutable ordered collection to store multiple data 

together.

● Create using parentheses.

● Get an element with index operator.

● Get number of elements with len function.

salad = ("spinach", "tomato", "vinegar")

first_ingredient = salad[0]
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Dictionaries
● Collection of ordered mutable key-value pairs.

● You cannot have duplicate keys.

● Define with braces and colons.

● Get element with index operator.

● Modify value of specific key with index op.

x = {"model": "Kia Rio", "year": 2003, "mpg": 25.32}

x["model"]

x["year"] = 2012
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Dictionaries (continued)
● Get number of elements with len function.
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Sets
● Unordered unindexed collection of unique values.

● Define with braces.

● Add with add.

● You cannot access a specific element (unindexed) 
therefore must use a loop!

● Remove element with remove.

fruits = {"mango", "apple", "pear"}  

fruits.add("banana") 

fruits.remove("mango") 
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Sequence iteration with for
● We can iterate over a sequence using the for loop.

x = [1, 2, 3, 4, 5]
sum = 0
for i in x:

sum += i

y = (1, 10, 15)
product = 1
for val in y:

product *= y

z = "turnip”
reverse = ""
for c in z:

reverse = c + reverse

d = {"x": 1, "y": 2}
resultant = 1
for k in d:

resultant /= d[k]
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x = {"apricot", "apple", "banana"}
num_a = 0
for fruit in x:

for character in fruit:
if character == "a":

num_a += 1
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Remember trying to print 5 
times?

● We initially did so with a while loop but we can do so 
also with a for loop. 

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")

x = 0
while x < 5:

print("hello")
x += 1

for i in range(0,5):
print("hello")

special library
function
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The range function
● We can create a sequence of numbers starting from a 

to excluding b with a step of c with range. 

range(start, stop, step)

What do I see when I execute?
for i in range(2, 10, 2):

print(i)

2 
4
6 
8
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The range function shorthands

range(one_argument) range(0, one_argument, 1)==

range(arg1, arg2) == range(arg1, arg2, 1)
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Popular Functions
Python docs



 28

Embed variables into strings
● We used the concatenation operator to build strings.

● We can make it more readable with string 
interpolation (know in python as f-strings).

first_name = "grace"
last_name = "hopper"
full_name = f"{first_name} {last_name}"
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String special characters
Characters Effect
\n New line

\t Add a tab

\r Carriage return

\f Form feed

\b Backspace

\\ Backslash

\’ Single quote

\” Double quote
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String functions
● .title(): capitalises every word in a string.

● .upper(): capitalises every character in a string.

● .lower(): minimises every character in a string.

● .split(separator?, maxsplit?): splits string along 
separator, default “ ”, maxsplit number of times, default 
infinity. 

x = "hello there"
x = x.title()

x = "today is Friday".split()
# ["today", "is", "Friday"]

x = "tomorrow".split("o")
# ["t", "m", "rr", "w"]
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Data type casting
You can convert data types to:

● Int with int

● Float with float

● String with str

● Tuple with tuple

● Set with set

x = int(2.8)
x = int("3")

x = float(6)
x = float("8.2")

x = str(1)
x = str("12.9")

x = tuple([1, 2, 3])
x = tuple("apple")

x = set([1, 2, 3])
x = set("apple")
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Interfacing
● print: copy input string to user’s terminal.

● input: ask user for input with optionally a prompt of 
input argument.

print("Hello there")

x = input()
y = input("Age: ")
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Documentation to find more!
● Python is a rich language with many built in features.

● To find all the build in functions you can look in the 
documentation: https://docs.python.org/3/.
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