
INFO5002: Intro to Python for Info Sys
Week 4

Slides created by: Zachary Doucet



 2

Week 4
I. Loops

II.  Advanced Data Types



 3

Recap



 4

Higher Order Functions

● Functions usually return 
data.

● What if we return a 
function?



 5

Functions calling themselves

Source: Sergey Pykhonin

 def countdown(t):

 print(t)

countdown(t-1)



 6

Conditionals allow for branching

if 4 == 2:
print("Here")

If keyword Conditional Colon

Indent: TAB or 4 spaces (PEP8)

Conditional
Block



 7

Loops
PCC 113-127



 8

Loops reduce repetition
● We repeat a group of operations together under a loop 

to reduce re-writing.

● Let’s say we want to print “hello” five times without 
using the repetitions operator.

do block five times:
print("hello")

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")

But how?



 9

The while loop
● If we want to repeat a block of code while a condition is 

True then use while.

x = 0
while x < 5:

print("hello")
x += 1

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")



 10

Change the path
● You can change the executing path with break and 

continue. 

x = 0
while True:

print("hello")
x += 1
if x >= 5:

break

How many times does hello print?
5 and 3

x = 0
while x < 5:

x += 1
if x % 2 == 0:

continue
print("hello")



 11

Let’s practice
● Create the following function:

I.  print_hello_x which takes in an integer and prints “hello” 
integer number of times. Don’t use the repetition operator.

II. riemann_sum which takes in an integer and returns the sum of 
all numbers from 0 to the argument (including). Do not use the 
closed form.

III. riemann_sum_lower which takes in two integers and returns the 
sum of all the numbers between the first (including) to the 
second (including). Do not use closed form.



 12

And some more
● Create the following function:

I.  sum_even which given an input sums together all the 
numbers from 0 to the input (inclusive) that are even.

II. get_age which keeps asking for user input until the age is a 
valid human age (assume humans don’t live beyond 150y) 
and returns that age.
You can get user input with input.
You can turn a string into an int with int. 

x = input("This is the prompt")

x = int(x)



 13

Advanced Data Types
PCC 33-70 and 91-112



 14

Lists
● To hold a collection of data you can 

use lists.

– Todo list

– Bookshelf

– Roster

Source: Wikimedia



 15

Working with lists
● We can create a list with brackets.

● Lists hold items in a specific order.

● Use brackets to access items on a list.

● Can also use brackets to assign at a location.

● We can get the number of elements in a list with len.

x = []
y = [1, 2, 3]

0 1 2 index
z = [2, 3, 4]
z[1]

Watch out:
IndexError

q = ["a", "b", "c"]
q[2] = "f" 

x = [1, 8, 4, 2]
_len = len(x)



 16

Modifying lists
● We can add to the end of a list with append.

● We can add to a specific index with insert.

● We can delete at a specific index with del or pop.

● We can remove at the end with pop.

x = [1, 2]
x.append(3)

y = ["a", "c"]
y.insert(1, "b")

x = [1, 2, 3]
del x[0]

x = [1, 2, 3]
x.pop(0)or

x = [1, 2, 3]
x.pop()



 17

Modifying lists (continued)
● We can remove a specific value once with remove.

● We can get elements between two indices with slice.

x = [1, 8, 4, 2]
x.remove(8)

x = [1, 2, 3, 4, 5]
y = x[1:2]

inclusive exclusive



 18

Tuples
● Immutable ordered collection to store multiple data 

together.

● Create using parentheses.

● Get an element with index operator.

● Get number of elements with len function.

salad = ("spinach", "tomato", "vinegar")

first_ingredient = salad[0]



 19

Dictionaries
● Collection of ordered mutable key-value pairs.

● You cannot have duplicate keys.

● Define with braces and colons.

● Get element with index operator.

● Modify value of specific key with index op.

x = {"model": "Kia Rio", "year": 2003, "mpg": 25.32}

x["model"]

x["year"] = 2012



 20

Dictionaries (continued)
● Get number of elements with len function.



 21

Sets
● Unordered unindexed collection of unique values.

● Define with braces.

● Add with add.

● You cannot access a specific element (unindexed) 
therefore must use a loop!

● Remove element with remove.

fruits = {"mango", "apple", "pear"}  

fruits.add("banana") 

fruits.remove("mango") 



 22

Sequence iteration with for
● We can iterate over a sequence using the for loop.

x = [1, 2, 3, 4, 5]
sum = 0
for i in x:

sum += i

y = (1, 10, 15)
product = 1
for val in y:

product *= y

z = "turnip”
reverse = ""
for c in z:

reverse = c + reverse

d = {"x": 1, "y": 2}
resultant = 1
for k in d:

resultant /= d[k]



 23

x = {"apricot", "apple", "banana"}
num_a = 0
for fruit in x:

for character in fruit:
if character == "a":

num_a += 1



 24

Remember trying to print 5 
times?

● We initially did so with a while loop but we can do so 
also with a for loop. 

print("hello")
print("hello")
print("hello")
print("hello")
print("hello")

x = 0
while x < 5:

print("hello")
x += 1

for i in range(0,5):
print("hello")

special library
function



 25

The range function
● We can create a sequence of numbers starting from a 

to excluding b with a step of c with range. 

range(start, stop, step)

What do I see when I execute?
for i in range(2, 10, 2):

print(i)

2 
4
6 
8



 26

The range function shorthands

range(one_argument) range(0, one_argument, 1)==

range(arg1, arg2) == range(arg1, arg2, 1)



 27

Popular Functions
Python docs



 28

Embed variables into strings
● We used the concatenation operator to build strings.

● We can make it more readable with string 
interpolation (know in python as f-strings).

first_name = "grace"
last_name = "hopper"
full_name = f"{first_name} {last_name}"



 29

String special characters
Characters Effect
\n New line

\t Add a tab

\r Carriage return

\f Form feed

\b Backspace

\\ Backslash

\’ Single quote

\” Double quote



 30

String functions
● .title(): capitalises every word in a string.

● .upper(): capitalises every character in a string.

● .lower(): minimises every character in a string.

● .split(separator?, maxsplit?): splits string along 
separator, default “ ”, maxsplit number of times, default 
infinity. 

x = "hello there"
x = x.title()

x = "today is Friday".split()
# ["today", "is", "Friday"]

x = "tomorrow".split("o")
# ["t", "m", "rr", "w"]



 31

Data type casting
You can convert data types to:

● Int with int

● Float with float

● String with str

● Tuple with tuple

● Set with set

x = int(2.8)
x = int("3")

x = float(6)
x = float("8.2")

x = str(1)
x = str("12.9")

x = tuple([1, 2, 3])
x = tuple("apple")

x = set([1, 2, 3])
x = set("apple")



 32

Interfacing
● print: copy input string to user’s terminal.

● input: ask user for input with optionally a prompt of 
input argument.

print("Hello there")

x = input()
y = input("Age: ")



 33

Documentation to find more!
● Python is a rich language with many built in features.

● To find all the build in functions you can look in the 
documentation: https://docs.python.org/3/.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

