INFO5002: Intro to Python for Info Sys
Week 5

Northeastern
University

Slides created by: Zachary Doucet

|. Advanced Data Types

Practice

lI. Introspection

Week 5

I1]. Classes

V. OOP

Recap

Loops reduce repetition

* We repeat a group of operations together under a loop
to reduce re-writing.

While keyword Conditional

N \

while count < 5:
print("Here") I ok

Colon

count += 1

Indent: TAB or 4 spaces (PEPS8)

Change loop path

* You can change the executing path with break and
continue.

 Break exits the loop.

 Continue skips this iteration.

Collections

Lists []
Tuples ()
Dictionaries {key: value}

Sets {}

Advanced Data Types Practice

Let’s practice

* Create the following function:

. sum which takes a list and returns the sum of all the values in
the list.

II. collect_stats which takes in a list of numbers and returns a tuple

of the average and the median.

1. remove_odd which takes a list and returns a new list without the

odd numbers.

V. percent_passed which takes a list of exam grades and returns

the percent of students that passed, assuming a pass >= 60.

8

And some more

* Create the following function:

. even_sum which takes a number n and returns the sum of

all even numbers between O and n. You must use for loop.

ll. average_position which takes in an array of tuples and

returns the average (x, V).

. remove_duplicate which takes in a list and returns a list with

the duplicates removed.

Introspection

Inspect documentation

10

https://docs.python.org/3/library/inspect.html

The ability to verify static type

 Avariable can point to any type!

* Introspection allows you to collapse all possibles to a

'_*r o = iy X I* A, '“
- > e : W L N

single type.

Source: Wikimedia

1"

Check type w/ special functions

 type K

e callable

X "banana"

callable(x)

type(x)

"orange"

def add(x, y):
return Xx

X add

callable(x)

X = 123 X = 3.14
type(x) type(x)

y

if type(x) str:
print("I am string")

elif type(x) int:
print("I am int")

elif type(x) float:
print("I am float")

12

Much more with inspect module

* inspect.isfuntion(object)
* inspect.signature(object)
* inspect.getsource(object)

- Cannot pass in built-in functions

13

Classes

PCC 157-18l

14

Classes to group functionality

 Functions group operations together and collections

group data together.

* Classes allow you to collect functions and variables

together.

Source: City of Toronto Archives

15

Creating classes Creating objects

 Create a class with the * Objects are created by

class keyword. “calling” a class.

16

Classes vs Objects

Classes are like function declarations and objects are

like function calls.
Objects are instantiated classes.

Objects have state which is the current value of all

variables held by the object.

17

o [J
To avoid confusion, name
properly!
 Variables and functions follow snake_case.

 For classes use UpperCamelCase.

class LightSaber: class BuildingMaterial: class PlanetaryVenhicle:
pass pass pass

18

Give your classes statefulness

* You can add attributes to your classes. ESECEERIISEEEE
X 1

 You can turn your dictionaries (with finite keys) into

classes.
X = {"model": "Kia Rio", class Car: . ,
llyearll: 2@@3’ Ilmpg": 25.32} . mOde-L "|<1a RlO"

year 2003
mpg 25.32
x = Car()

Accessing and Mutating

x["model™"] Sl x .model

x["model"] "Kia Soul" 2 X .model "Kia Soul" LE

Have different state with
constructors

 Constructors allow passing in of data at object creation.

 This can allow for changing (and avoiding) default state.

class Car:
model "Kia Rio"
year 2003
mpg 25.32

class Car:
def _init_ (self, model
year, mpg):
self.model model
self.year year
self.mpg = mpg

def init (self, model,

year, mpg):
self.model mode'l
self.year year

x = Car("Kia Rio", 2003, 25.32) 20

X = Car("Kia Rio", 2003, 25.32)

We can still have defaults!

 Simply set constructor’s arguments to optional.

class Car:
def _init (self,
model "Kia Rio", Car()
year = 2003, Car(model="Kia Soul")
mpg = 25.32): Car(year=1995)

self.model = model Car(mpg=32.16)
self.year = year Car(model="Kia Sportage",
self.mpg = mpg year=2025)

What is the state of objects a, b, c,
d, and e after creation? 21

Every class has a constructor

* |f you do not provide a constructor a default one is
provided.

def _init_ (self):

pass

 Even without constructor you can still create objects
which will call the default constructor.

class MyClass:

pass
my_class = MyClass()

22

Printing looks weird

class Car: Create a _str_ method.
def _init_ (self, model):

class Car:
def init (self, model):
self.model model
l def _ str (self):

self.model model
x = Car("Honda")
print(x)

return f"Vehicle model:
{self.model}"
X Car("Honda")

print(x)
'

Vehicle model: Honda

23

<_main__.Car object at 0x7fb8e5094ec0>

Create methods to bind
functionality

Methods are functions written in a class.

class Car;

- x = Car("Ford")
def init_ (self, model):

print(x.my_model())

self. model = model Car.car_sound()

print(Car.my_model(x))

def my_model(self):

return self.model ;
When calling a method on an

def car_sound(): object, it passes itself as first
print(" Vrooom") argument.

24

self

 Variable that references the current instance of the

class (the object) to get associated variables.

 Not necessary except for __init__. Those without are

called static.

 Can be called anything but must always be the first

argument.

25

o @ @
Working with objects
« Mutate attribute by assignment.

 Delete attribute with del.

- Delete object with del.

26

Let’s practice

e Create a class Stats which has a constructor that takes

INn a list of numbers. Create the following methods:
- average: which returns the average of the list.

- median: which returns the median of the list.

- min: which returns the minimum of the list.

- max: which returns the maximum of the list.
27

Let’s practice (Continued)

* Create a class Timer with the following methods:
- start: which starts the timer.
- stop: which ends the timer.
- elapsed: which returns the elapsed time.

- reset: which resets the timer.

* You can get the current time with time.time(). .

OOP

29

The holy grail

“Everything is an object. Treat everything

like an ob

Source: Monty Python and the Holy Grail

30

Pizza Restaurant

 Let'ssay | am opening a pizza restaurant off Granville
and West Georgia. What classes would | create to model|

this restaurant?

Source: Arnold Gatilao Source: Wikimedia

31

Class for each object

Generally, every physical entity should have its own

class. E.g. a table, a car, a television, a shirt, etc.

Similarly, non-physical entities should have their own

class. E.g. a lecture, an idea, a law, a game, etc.

Any possible situation can be modelled as a
group of objects with class definitions.

32

How objects relate

* |f an object has another, use an attribute.

« |f an object is/is like another, use inheritance.

Pizza

has is like

Source: Eva K. Source: Deryck Chan

33

Inheritance

* Inheritance is a way to save code by copying all the

methods and attributes from the parent to the child.
Animal

Marqmal

Canis
A

Dog

34

Inheriting

* You inherit a class by placing the name of the parent
class in parentheses after the child’s class name

declaration.

class Animal: class Dog(Animal):
def _ init_ (self, name): def woof():
self.name = name print("Woof!")

animal = Animal("Timmy") dog = Dog("Timmy")
print(animal.name) print(dog.name)
Dog.woof ()

35

Not everything gets inherited

« Any methods that you define in the child’s class that

exist in the parent’s class will not be inherited.

class Animal:
def _ init_ (self, name):

class Dog(Animal):
def init_ (self, name, breed):
super(). init__ (name)
self.breed breed

self.name EE

Only the method’'s name matters def woof():
in determining whether to inherit orint("Woof!")
or not.

Inheritance can make objects
behave differently

 Two objects may have a common superclass with a
common method which behaves differently

(Polymorphism).

class Dog(Animal):
def speak(self):
print("woof!")

x = Animal()
y = Dog()
Z

class Animal:
def _init_ (self, name):

Cat
self.name name ()

x.speak()

y.speak()
z.speak()

class Cat(Animal):

def speak(self): def speak(self):
print("Squeek") print("Meow.")

37

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

