
INFO5002: Intro to Python for Info Sys
Week 5

Slides created by: Zachary Doucet

 2

Week 5

I. Advanced Data Types
Practice

II. Introspection

III. Classes

IV. OOP

 3

Recap

 4

Loops reduce repetition
● We repeat a group of operations together under a loop

to reduce re-writing.

while count < 5:
print("Here")
count += 1

While keyword Conditional Colon

Indent: TAB or 4 spaces (PEP8)

Block

 5

Change loop path
● You can change the executing path with break and

continue.

● Break exits the loop.

● Continue skips this iteration.

 6

Collections
● Lists []

● Tuples ()

● Dictionaries {key: value}

● Sets {}

Source: Wikimedia

 7

Advanced Data Types Practice

 8

Let’s practice
● Create the following function:

I. sum which takes a list and returns the sum of all the values in
the list.

II. collect_stats which takes in a list of numbers and returns a tuple
of the average and the median.

III. remove_odd which takes a list and returns a new list without the
odd numbers.

IV. percent_passed which takes a list of exam grades and returns
the percent of students that passed, assuming a pass >= 60.

 9

And some more
● Create the following function:

I. even_sum which takes a number n and returns the sum of
all even numbers between 0 and n. You must use for loop.

II. average_position which takes in an array of tuples and
returns the average (x, y).

III. remove_duplicate which takes in a list and returns a list with
the duplicates removed.

 10

Introspection
Inspect documentation

https://docs.python.org/3/library/inspect.html

 11

The ability to verify static type
● A variable can point to any type!

● Introspection allows you to collapse all possibles to a
single type.

Source: Wikimedia

 12

Check type w/ special functions
● type

● callable

x = "orange"
type(x)

x = 123
type(x)

x = 3.14
type(x)

if type(x) is str:
print("I am string")

elif type(x) is int:
print("I am int")

elif type(x) is float:
print("I am float")

x = "banana"
callable(x)

def add(x, y):
return x + y

x = add
callable(x)

 13

Much more with inspect module
● inspect.isfuntion(object)

● inspect.signature(object)

● inspect.getsource(object)

– Cannot pass in built-in functions

 14

Classes
PCC 157-181

 15

Classes to group functionality
● Functions group operations together and collections

group data together.

● Classes allow you to collect functions and variables
together.

Source: City of Toronto Archives

 16

Creating classes
● Create a class with the

class keyword.

Creating objects
● Objects are created by

“calling” a class.

class Car:
...

car = Car()

 17

Classes vs Objects
● Classes are like function declarations and objects are

like function calls.

● Objects are instantiated classes.

● Objects have state which is the current value of all
variables held by the object.

 18

To avoid confusion, name
properly!

● Variables and functions follow snake_case.

● For classes use UpperCamelCase.

class LightSaber:
pass

class BuildingMaterial:
pass

class PlanetaryVehicle:
pass

 19

Give your classes statefulness
● You can add attributes to your classes.

● You can turn your dictionaries (with finite keys) into
classes.

x = {"model": "Kia Rio",
 "year": 2003, "mpg": 25.32}

class myClass:
x = 1

class Car:
model = "Kia Rio"
year = 2003
mpg = 25.32

x = Car()

x["model"] x.model

Accessing and Mutating

x["model"] = "Kia Soul" x.model = "Kia Soul"

 20

Have different state with
constructors

● Constructors allow passing in of data at object creation.
● This can allow for changing (and avoiding) default state.

class Car:
def __init__(self, model
 year, mpg):

self.model = model
self.year = year
self.mpg = mpg

x = Car("Kia Rio", 2003, 25.32)

class Car:
model = "Kia Rio"
year = 2003
mpg = 25.32

def __init__(self, model,
 year, mpg):

self.model = model
self.year = year
self.mpg = mpg

x = Car("Kia Rio", 2003, 25.32)
No Defaults

 21

We can still have defaults!
● Simply set constructor’s arguments to optional.

class Car:
def __init__(self,
 model = "Kia Rio",
 year = 2003,
 mpg = 25.32):

self.model = model
self.year = year
self.mpg = mpg

...

...

a = Car()
b = Car(model="Kia Soul")
c = Car(year=1995)
d = Car(mpg=32.16)
e = Car(model="Kia Sportage",

 year=2025)

What is the state of objects a, b, c,
d, and e after creation?

 22

Every class has a constructor
● If you do not provide a constructor a default one is

provided.

● Even without constructor you can still create objects
which will call the default constructor.

def __init__(self):
pass

class MyClass:
pass

my_class = MyClass()

 23

Printing looks weird
Create a __str__ method.class Car:

def __init__(self, model):
self.model = model

x = Car("Honda")
print(x)

<__main__.Car object at 0x7fb8e5094ec0>

class Car:
def __init__(self, model):

self.model = model
def __str__(self):

return f"Vehicle model:
{self.model}"

x = Car("Honda")
print(x)

Vehicle model: Honda

 24

Create methods to bind
functionality

● Methods are functions written in a class.
class Car:

def __init__(self, model):
self.model = model

def my_model(self):
return self.model

def car_sound():
print("Vrooom")

x = Car("Ford")
print(x.my_model())
Car.car_sound()
print(Car.my_model(x))

When calling a method on an
object, it passes itself as first
argument.

 25

self
● Variable that references the current instance of the

class (the object) to get associated variables.

● Not necessary except for __init__. Those without are
called static.

● Can be called anything but must always be the first
argument.

 26

Working with objects
● Mutate attribute by assignment.

● Delete attribute with del.

● Delete object with del.

x.brand = "Dodge"

del x.brand

del x

 27

Let’s practice
● Create a class Stats which has a constructor that takes

in a list of numbers. Create the following methods:

– average: which returns the average of the list.

– median: which returns the median of the list.

– min: which returns the minimum of the list.

– max: which returns the maximum of the list.

 28

Let’s practice (Continued)
● Create a class Timer with the following methods:

– start: which starts the timer.

– stop: which ends the timer.

– elapsed: which returns the elapsed time.

– reset: which resets the timer.

● You can get the current time with time.time().

 29

OOP

 30

The holy grail

“Everything is an object. Treat everything
like an object.”

Source: Monty Python and the Holy Grail

 31

Pizza Restaurant
● Let’s say I am opening a pizza restaurant off Granville

and West Georgia. What classes would I create to model
this restaurant?

Source: Arnold Gatilao Source: Wikimedia

 32

Class for each object
● Generally, every physical entity should have its own

class. E.g. a table, a car, a television, a shirt, etc.

● Similarly, non-physical entities should have their own
class. E.g. a lecture, an idea, a law, a game, etc.

Any possible situation can be modelled as a
group of objects with class definitions.

 33

How objects relate
● If an object has another, use an attribute.

● If an object is/is like another, use inheritance.

Pizza

Source: Deryck ChanSource: Eva K.

has is like

 34

Inheritance
● Inheritance is a way to save code by copying all the

methods and attributes from the parent to the child.

Animal

Mammal

Canis

Dog

 35

Inheriting
● You inherit a class by placing the name of the parent

class in parentheses after the child’s class name
declaration.
class Animal:

def __init__(self, name):
self.name = name

class Dog(Animal):
def woof():

print("Woof!")

animal = Animal("Timmy")
print(animal.name)

dog = Dog("Timmy")
print(dog.name)
Dog.woof()

 36

Not everything gets inherited
● Any methods that you define in the child’s class that

exist in the parent’s class will not be inherited.

class Animal:
def __init__(self, name):

self.name = name

class Dog(Animal):
def __init__(self, name, breed):

super().__init__(name)
self.breed = breed

def woof():
print("Woof!")

Only the method’s name matters
in determining whether to inherit
or not.

Keep super
call first
statement.

 37

Inheritance can make objects
behave differently

● Two objects may have a common superclass with a
common method which behaves differently
(Polymorphism).

class Animal:
def __init__(self, name):

self.name = name

def speak(self):
print("Squeek")

class Dog(Animal):
def speak(self):

print("Woof!")

class Cat(Animal):
def speak(self):

print("Meow.")

x = Animal()
y = Dog()
z = Cat()
x.speak()
y.speak()
z.speak()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

