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Week 5

I.  Advanced Data Types 
Practice

II.  Introspection

III. Classes

IV. OOP
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Recap
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Loops reduce repetition
● We repeat a group of operations together under a loop 

to reduce re-writing.

while count < 5:
print("Here")
count += 1

While keyword Conditional Colon

Indent: TAB or 4 spaces (PEP8)

Block
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Change loop path
● You can change the executing path with break and 

continue. 

● Break exits the loop.

● Continue skips this iteration.
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Collections
● Lists []

● Tuples ()

● Dictionaries {key: value}

● Sets {}

Source: Wikimedia
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Advanced Data Types Practice
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Let’s practice
● Create the following function:

I.  sum which takes a list and returns the sum of all the values in 
the list.

II. collect_stats which takes in a list of numbers and returns a tuple 
of the average and the median.

III. remove_odd which takes a list and returns a new list without the 
odd numbers.

IV.  percent_passed which takes a list of exam grades and returns 
the percent of students that passed, assuming a pass >= 60.
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And some more
● Create the following function:

I.  even_sum which takes a number n and returns the sum of 
all even numbers between 0 and n. You must use for loop.

II. average_position which takes in an array of tuples and 
returns the average (x, y).

III. remove_duplicate which takes in a list and returns a list with 
the duplicates removed.
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Introspection
Inspect documentation

https://docs.python.org/3/library/inspect.html
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The ability to verify static type
● A variable can point to any type!

● Introspection allows you to collapse all possibles to a 
single type. 

Source: Wikimedia
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Check type w/ special functions
● type

● callable

x = "orange"
type(x)

x = 123
type(x)

x = 3.14
type(x)

if type(x) is str:
print("I am string")

elif type(x) is int:
print("I am int")

elif type(x) is float:
print("I am float")

x = "banana"
callable(x)

def add(x, y):
return x + y

x = add
callable(x)
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Much more with inspect module
● inspect.isfuntion(object)

● inspect.signature(object)

● inspect.getsource(object)

– Cannot pass in built-in functions
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Classes
PCC 157-181
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Classes to group functionality
● Functions group operations together and collections 

group data together.

● Classes allow you to collect functions and variables 
together.

Source: City of Toronto Archives
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Creating classes
● Create a class with the 

class keyword.

Creating objects
● Objects are created by 

“calling” a class.

class Car:
... 

car = Car()
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Classes vs Objects
● Classes are like function declarations and objects are 

like function calls.

● Objects are instantiated classes.

● Objects have state which is the current value of all 
variables held by the object.
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To avoid confusion, name 
properly!

● Variables and functions follow snake_case.

● For classes use UpperCamelCase.

class LightSaber:
pass 

class BuildingMaterial:
pass 

class PlanetaryVehicle:
pass 
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Give your classes statefulness
● You can add attributes to your classes.

● You can turn your dictionaries (with finite keys) into 
classes.

x = {"model": "Kia Rio", 
  "year": 2003, "mpg": 25.32}

class myClass:
x = 1

class Car:
model = "Kia Rio"
year = 2003
mpg = 25.32

x = Car()

x["model"] x.model

Accessing and Mutating

x["model"] = "Kia Soul" x.model = "Kia Soul"
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Have different state with 
constructors

● Constructors allow passing in of data at object creation.
● This can allow for changing (and avoiding) default state.

class Car:
def __init__(self, model
  year, mpg):

self.model = model
self.year = year
self.mpg = mpg

x = Car("Kia Rio", 2003, 25.32)

class Car:
model = "Kia Rio"
year = 2003
mpg = 25.32

def __init__(self, model,
  year, mpg):

self.model = model
self.year = year
self.mpg = mpg 

x = Car("Kia Rio", 2003, 25.32)
No Defaults
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We can still have defaults!
● Simply set constructor’s arguments to optional.

class Car:
def __init__(self, 
  model = "Kia Rio",
  year = 2003, 
  mpg = 25.32):

self.model = model
self.year = year
self.mpg = mpg

...

...

a = Car()
b = Car(model="Kia Soul")
c = Car(year=1995)
d = Car(mpg=32.16)
e = Car(model="Kia Sportage",

   year=2025)

What is the state of objects a, b, c,
d, and e after creation?
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Every class has a constructor
● If you do not provide a constructor a default one is 

provided.

● Even without constructor you can still create objects 
which will call the default constructor. 

def __init__(self):
pass

class MyClass:
pass

my_class = MyClass() 
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Printing looks weird
Create a __str__ method.class Car:

def __init__(self, model):
self.model = model

x = Car("Honda")
print(x)

<__main__.Car object at 0x7fb8e5094ec0> 

class Car:
def __init__(self, model):

self.model = model
def __str__(self):

return f"Vehicle model: 
{self.model}"

x = Car("Honda")
print(x)

Vehicle model: Honda
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Create methods to bind 
functionality

● Methods are functions written in a class.
class Car:

def __init__(self, model):
self.model = model

def my_model(self):
return self.model

def car_sound():
print("Vrooom")

x = Car("Ford")
print(x.my_model())
Car.car_sound()
print(Car.my_model(x))

When calling a method on an 
object, it passes itself as first 
argument.
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self
● Variable that references the current instance of the 

class (the object) to get associated variables.

● Not necessary except for __init__. Those without are 
called static.

● Can be called anything but must always be the first 
argument.
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Working with objects
● Mutate attribute by assignment.

● Delete attribute with del.

● Delete object with del.

x.brand = "Dodge"

del x.brand

del x
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Let’s practice
● Create a class Stats which has a constructor that takes 

in a list of numbers. Create the following methods:

– average: which returns the average of the list.

– median: which returns the median of the list.

– min: which returns the minimum of the list.

– max: which returns the maximum of the list.
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Let’s practice (Continued)
● Create a class Timer with the following methods:

– start: which starts the timer.

– stop: which ends the timer.

– elapsed: which returns the elapsed time.

– reset: which resets the timer.

● You can get the current time with time.time().
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OOP
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The holy grail

“Everything is an object. Treat everything 
like an object.”

Source: Monty Python and the Holy Grail
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Pizza Restaurant
● Let’s say I am opening a pizza restaurant off Granville 

and West Georgia. What classes would I create to model 
this restaurant?

Source: Arnold Gatilao Source: Wikimedia
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Class for each object
● Generally, every physical entity should have its own 

class. E.g. a table, a car, a television, a shirt, etc.

● Similarly, non-physical entities should have their own 
class. E.g. a lecture, an idea, a law, a game, etc.

Any possible situation can be modelled as a 
group of objects with class definitions.
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How objects relate
● If an object has another, use an attribute.

● If an object is/is like another, use inheritance.

Pizza

Source: Deryck ChanSource: Eva K.

has is like
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Inheritance
● Inheritance is a way to save code by copying all the 

methods and attributes from the parent to the child. 

Animal

Mammal

Canis

Dog
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Inheriting
● You inherit a class by placing the name of the parent 

class in parentheses after the child’s class name 
declaration.
class Animal:

def __init__(self, name):
self.name = name

   

class Dog(Animal):
def woof():

print("Woof!")
   

animal = Animal("Timmy")
print(animal.name)

dog = Dog("Timmy")
print(dog.name)
Dog.woof()
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Not everything gets inherited
● Any methods that you define in the child’s class that 

exist in the parent’s class will not be inherited.

class Animal:
def __init__(self, name):

self.name = name
   

class Dog(Animal):
def __init__(self, name, breed):

super().__init__(name)
self.breed = breed

def woof():
print("Woof!")

   

Only the method’s name matters 
in determining whether to inherit 
or not.

Keep super 
call first 
statement.
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Inheritance can make objects 
behave differently

● Two objects may have a common superclass with a 
common method which behaves differently 
(Polymorphism).

class Animal:
def __init__(self, name):

self.name = name

def speak(self):
print("Squeek")

   

class Dog(Animal):
def speak(self):

print("Woof!")
   

class Cat(Animal):
def speak(self):

print("Meow.")
   

x = Animal()
y = Dog()
z = Cat()
x.speak()
y.speak()
z.speak()
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