INFO5002: Intro to Python for Info Sys
Week 6

Northeastern
University

Slides created by: Zachary Doucet

|. Encapsulation

. Modules and Packages

Week 6 I1l. Error Handling

V. Debugging

Admin

Key dates

e Final exam Dec 12t 9-12 am same class room.
 Project Dec 14 at 11:59 pm.

* Pizza party after class today from 1-2:30 pm.

Recap

Introspection to verify type

X 123 X 3.14
type(x) type(x)

e tvpe R "orange"
4 type(x)

if type(x) str:
print("I am string")
elif type(x) int:

callable T e I

elif type(x) float:
print("I am float")

def add(x, y):
return x + vy

X "banana"

callable(x)

X add
callable(x)

Source: Wikimedia

Classes to group functionality

 Functions group operations together and collections

group data together.

* Classes allow you to collect functions and variables

together.

class Car:

car Car()

Source: City of Toronto Archives

The holy grail

“Everything is an object. Treat everything

like an ob

Source: Monty Python and the Holy Grail

Inheritance

* Inheritance is a way to save code by copying all the

methods and attributes from the parent to the child.

class Animal: class Dog(Animal):
def _init_ (self, name): def woof():
self.name = name print("Woof!")

animal = Animal("Timmy") dog = Dog("Timmy")
print(animal.name) print(dog.name)
Dog.woof ()

Polymorphism

* Super-class group of objects can all execute a method

from the same super-class.

class Dog(Animal):
def speak(self):

Ani : :
class Animal orint("Woof!")

def _init_ (self, name):
self.name name

class Cat(Animal):

def speak(self): def speak(self):
print("Squeek") print("Meow.")

Encapsulation

1"

1 want to protect my data!

* |tis generally good practice to expose only the

minimum amount of data necessary.

class BankAccount:

id = 0 . Maybe don't need to have all of
name
balance = 0 these attributes publicly

credit 0

lnterest rate 0
overdrafted False
login_dates = []

exposed.

12

You can hide with encapsulation

« Encapsulation is the process of selectively hiding data

between components.
- Protect from unauthorized or accidental mutations.
- Add validation to getting and mutating.

- Hiding business logic.

13

There are three access modifiers

 Public:any component can access (default).
 Protected: class and subclasses.

* Private: only the class.

Only private access modifer enforced (through name mangling).
It is however good practice to use protected.

14

The mode is defined through
frontal underscores

 Public: no underscore.
* Protected: single underscore.

e Private: double underscore.

class BankAccount:
1d 7312835182 # Public

_name "John Doe" # Protected
__balance 0 # Private

15

Getter

Private attributes cannot be accessed outside the class

and thus must be shared to a method known as a

etter. class BankAccount: We can get
J def __init_ (self, initial_balance): S
R attribute’s
self._ balance 1nitial_balance VEllE
def get_balar{fce();) . 4 without
return selt.__Dbalance being able
to mutate.

« Can add logic to the getter.

16

Setter

e Private attributes cannot be mutated outside the class

and thus must be updated through a method known as

=RSISINNSIM class BankAccount:
def init_ (self, initial_balance):
self.__balance initial_balance
def set balance(new balance):
1f new_balance 0:

self.overdraft True

return
self._ balance new_balance

 Can add logic to the setter.

17

Let’s Practice

* Create a class BankAccount which has a constructor
that takes in an initial balance. The balance should be
updated only through two methods deposit and
withdraw which both take in a number representing
deposit or withdrawal amount. Add logic to guard

against overdraft.

18

Modules and Packages

PCC 149-152, 173-179

19

Terminology

« A module is a Python file w/ reusable elements.

- Classes and functions

A package is a folder with at least 1 module and a

special __init__.py file.

* You can nest packages into packages which become

sub-packages.

20

algorithms/
__Init_.py
euclidean.py
math/
__Init__.py
basic.py
main.py
screen.py

code directory
package
special init file
module
sub-package
special init file
module

entry point
not a module

21

Use init to expose

algorithms/ e
__Init_.py .basic

euclidean.py . :
add(x, y): mul, div, sqrt
ath/ mmnn Add y to X mmomn

init.py

| basic.py return x + y
main.py sub(x, y):

screen.py Subtract y from x

return X y .math

mul(x, y): add

"""Multiply x by y"""

return x y

div(x, y): def hypotenuse(x, y):
"""Divide x by y""" return sqrt(add(mul(x, x),
return x /vy mul(y, v)))

sqrt(x):
"""Square root x
return math.sqrt(x)

Import package as normal

algorithms/
Init.py _ . _
euclidean.py algorithms) euclidean
ypotenuse
math/ hypotenuse, add o
__init_.py .ma
basic.py : .
main.py print("The hypotenuse of

screen.py the 3, 4 triangle is: "
str(hypotenuse(3, 4)))

.math mul, sqrt,
add

print("1 + 1 =
str(add(1, 1)))
def hypotenuse(x, y):

return sqrt(add(mul(x, x),
mulCy, y)))

23

We import with from import

from keyword import keyword

. .

package modulel, module2, module3,

f \

package name
package's module names

24

Different packages

Import python std packages via their name

Import external packages via their name

- Will need to install first with pip

- Can see all packages from pypi.org

algorithms.math

Import user defined packages via absolute

Import user defined packages via relative
25

https://pypi.org/

] want to import everything

*wildcard

26

Entry file special case

* The entry file is not loaded as a module and for that
reason when you run it you cannot use relative imports

as It Is the start.

* Always use absolute paths.

27

Let’s practice

calculator_project . . :
project/ Design the following project on your

main.py .
computer where when main executes

L— calculator/ , , ,
it asks the user to input a first number,
— __init__.
i second number, and finally the
— add.py .
operation to perform.
— subtract.py

— multiply.py
L divide.py 28

PCC 192-199

29

Sometimes our code crashes

* When executing some code Python may not know

what to do and throw an exception.

* |If an exception is not caught, then Python crashes the

runtime.

30

We protect our at risk with try-
except.

e |If an exception may be thrown it is best to surround it
with a try-except block specifying the expected

exception.

int(input("Enter a number: "))

y 10 X
except ZeroDivisionError:
print("Thou shall not giveth a 0")

31

Use else to set what happens on
non exception.

* |If we have specific code we only want to run if the try

block did not produce an error, we can use an else

block.
try:
X = int(input("Enter a number: "))
y 10 X

except ZeroDivisionError:

print("Thou shall not giveth a 0")
else:

print(f"Your code is {y}")

32

You can fail silently if you want

e Sometimes you do not want to inform the user that an
error was produced, so you can supply pass to the

except block.

try:
X = int(input("Enter a number: "))
y 10 X

except ZeroDivisionError:
pass

else:
print(f"Your code is {y}")

33

Use exception if unsure type

If you are unsure of the type, or have potentially
Mmultiple exception types that you want to act similarly,

use Exception as type.

try:
X = int(input("Enter a number: "))
y 10 X

except Exception:
pass
else:
print(f"Your code is {y}")

34

Let’s practice

* Write a program that will safely divide two user
provided numbers, and will continuously prompt until

SUcCcess.

35

36

We make mistakes

* |n fact the first time you write code there will be

problems.
* These bugs, we need a way to hunt them down.

« Debugging! P v

37

2 Main Techniques

1) Validating intermediate variables states with printing.

2) Using purpose built debugger.

38

Printing

e Sometimes printing the state of variables at a given

moment can help spot bugs.

def find_largest(numbers):
largest 0
for num numbers:
1f num > largest: 0
largest num
return largest

print(find_largest([-10, -5,

39

Adding print statements

Initial largest: 0

def find_largest(numbers):

largest 0 Checking number: -10
. N e " -10 is not greater
print("Initial largest:", largest) than o
for num numbers: Checking number: -5
print("Checking number:", num) ;ﬁlﬁwnotgfﬂ“ff
) an
1f num, lafgeSt' i Checking number: -20
print(f"{num} is greater -20 is not greater

than {largest} > updating largest") than 0
largest = num Result: 0
else:
print(f"{num} is not greater than {largest}")
return largest

Test case
print("Result:", find largest([-10, -5, -20]))

Using Python pdb

def find_largest(numbers):
largest 0
for num numbers:
breakpoint()
1f num > largest:
largest num
return largest

print(find_largest([-10, -5, -20]))

python main.py

— breakpoint()

(Pdb) p largest

0

(Pdb) p num

-10

(Pdb) p num > largest
False

(Pdb) n

— if num > largest:
(Pdb) n

— for num in numbers:
(Pdb) p num

-10

(Pdb) n

— breakpoint()
(Pdb) p num

-5

(Pdb) n

— 1f num > largest:
(Pdb) n

— for num in numbers:
(Pdb) ¢

— breakpoint()
(Pdb) p num

-20

(Pdb) c

0

https://docs.python.org/3/library/pdb.html

Common debugger commands

N (next): go to next line of current function.

S (step): go to very next line (if function call » go inside).

e D expression: prints the expression (vars included).

c (continue): go to the next breakpoint.

 And so much more you can use from the docs.

 https://docs.python.org/3/library/pdb.html

42

https://docs.python.org/3/library/pdb.html

Let’s practice

* Try to solve the bug in the following code which you can

find on canvas.

def find max(nums):
max_val = nums[0]
for 1 range(1, len(nums) - 1):

if nums[1i] max_val:
max_val nums[1]
return max_val

43

And some more

def repeat_message(message, times):
return message times

msg = input("Enter a message: ")
count = input("How many times? ")
print(repeat _message(msg, count))

def sum_even(numbers):
total 0
for num numbers:
1f num 2 1:
total num
return total

print("Sum of even numbers:", sum_even([1, 2, 3, 4, 5, 6]))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

