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Week 6

I. Encapsulation

II.  Modules and Packages

III. Error Handling 

IV. Debugging
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Key dates
● Final exam Dec 12th 9-12 am same class room.

● Project Dec 14 at 11:59 pm.

● Pizza party after class today from 1-2:30 pm.
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Recap
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Introspection to verify type
● type

● callable

x = "orange"
type(x)

x = 123
type(x)

x = 3.14
type(x)

if type(x) is str:
print("I am string")

elif type(x) is int:
print("I am int")

elif type(x) is float:
print("I am float")

x = "banana"
callable(x)

def add(x, y):
return x + y

x = add
callable(x)

Source: Wikimedia
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Classes to group functionality
● Functions group operations together and collections 

group data together.

● Classes allow you to collect functions and variables 
together.

Source: City of Toronto Archives

class Car:
... 

car = Car()
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The holy grail

“Everything is an object. Treat everything 
like an object.”

Source: Monty Python and the Holy Grail
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Inheritance
● Inheritance is a way to save code by copying all the 

methods and attributes from the parent to the child. 

class Animal:
def __init__(self, name):

self.name = name
   

class Dog(Animal):
def woof():

print("Woof!")
   

animal = Animal("Timmy")
print(animal.name)

dog = Dog("Timmy")
print(dog.name)
Dog.woof()
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Polymorphism
● Super-class group of objects can all execute a method 

from the same super-class. 

class Animal:
def __init__(self, name):

self.name = name

def speak(self):
print("Squeek")

   

class Dog(Animal):
def speak(self):

print("Woof!")
   

class Cat(Animal):
def speak(self):

print("Meow.")
   

x = Animal()
y = Dog()
z = Cat()
x.speak()
y.speak()
z.speak()
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Encapsulation
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I want to protect my data!
● It is generally good practice to expose only the 

minimum amount of data necessary. 

class BankAccount:
id = 0
name = ""
balance = 0
credit = 0
interest_rate = 0
overdrafted = False
login_dates = []
   

Maybe don’t need to have all of 
these attributes publicly 
exposed.
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You can hide with encapsulation
● Encapsulation is the process of selectively hiding data 

between components.

– Protect from unauthorized or accidental mutations.

– Add validation to getting and mutating.

– Hiding business logic.
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There are three access modifiers
● Public: any component can access (default).

● Protected: class and subclasses.

● Private: only the class.

Only private access modifer enforced (through name mangling). 
It is however good practice to use protected.
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The mode is defined through 
frontal underscores

● Public: no underscore.

● Protected: single underscore.

● Private: double underscore.

class BankAccount:
id = 7312835182 # Public
_name = "John Doe" # Protected
__balance = 0 # Private
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Getter
● Private attributes cannot be accessed outside the class 

and thus must be shared to a method known as a 
getter.

● Can add logic to the getter.

class BankAccount:
def __init__(self, initial_balance):

self.__balance = initial_balance
def get_balance():

return self.__balance

We can get 
attribute’s 
value 
without 
being able 
to mutate.
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Setter
● Private attributes cannot be mutated outside the class 

and thus must be updated through a method known as 
a setter.

● Can add logic to the setter.

class BankAccount:
def __init__(self, initial_balance):

self.__balance = initial_balance
def set_balance(new_balance):

if new_balance < 0:
self.overdraft = True
return

self.__balance = new_balance
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Let’s Practice
● Create a class BankAccount which has a constructor 

that takes in an initial balance. The balance should be 
updated only through two methods deposit and 
withdraw which both take in a number representing 
deposit or withdrawal amount. Add logic to guard 
against overdraft.
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Modules and Packages
PCC 149-152, 173-179
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Terminology
● A module is a Python file w/ reusable elements.

– Classes and functions

● A package is a folder with at least 1 module and a 
special __init__.py file.

● You can nest packages into packages which become 
sub-packages.
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Example
/

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

code directory
package
special init file
module
sub-package
special init file
module
entry point
not a module
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Use init to expose
/ 

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

# /algorithms/math/basic.py
import math

def add(x, y):
    """Add y to x"""
    return x + y
def sub(x, y):
    """Subtract y from x"""
    return x - y
def mul(x, y):
    """Multiply x by y"""
    return x * y
def div(x, y):
    """Divide x by y"""
    return x / y
def sqrt(x):

"""Square root x"""
    return math.sqrt(x)

# /algorithms/math/__init__.py

from .basic import add, sub, 
mul, div, sqrt

# /algorithms/euclidean.py

from .math import mul, sqrt, 
add

def hypotenuse(x, y):
    return sqrt(add(mul(x, x), 

mul(y, y)))
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Import package as normal
/ 

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

# /main.py

from algorithms import 
hypotenuse, add

print("The hypotenuse of 
the 3, 4 triangle is: " + 
str(hypotenuse(3, 4)))

print("1 + 1 = " + 
str(add(1, 1)))

# /algorithms/__init__.py

from .euclidean import 
hypotenuse
from .math import add

# /algorithms/euclidean.py

from .math import mul, sqrt, 
add

def hypotenuse(x, y):
    return sqrt(add(mul(x, x), 

mul(y, y)))
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We import with from import

from package import module1, module2, module3, ...

from keyword import keyword

package name
package’s module names
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Different packages
● Import python std packages via their name

● Import external packages via their name

– Will need to install first with pip

– Can see all packages from pypi.org 

● Import user defined packages via absolute

● Import user defined packages via relative 

from math

from numpy

pip install numpy

from algorithms.math

from .math

https://pypi.org/
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I want to import everything

from package import *

* wildcard



 27

Entry file special case
● The entry file is not loaded as a module and for that 

reason when you run it you cannot use relative imports 
as it is the start. 

● Always use absolute paths.



 28

Let’s practice
calculator_project/

 main.py├──

 calculator/└──

     __init__.py├──

     add.py├──

     subtract.py├──

     multiply.py├──

     divide.py└──

●

Design the following project on your 
computer where when main executes 
it asks the user to input a first number, 
second number, and finally the 
operation to perform.
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Error Handling
PCC 192-199
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Sometimes our code crashes
● When executing some code Python may not know 

what to do and throw an exception.

● If an exception is not caught, then Python crashes the 
runtime.

x = 0
y = 10 / x

ZeroDivisionError: division by zero
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We protect our at risk with try-
except.

● If an exception may be thrown it is best to surround it 
with a try-except block specifying the expected 
exception.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
print("Thou shall not giveth a 0")
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Use else to set what happens on 
non exception.

● If we have specific code we only want to run if the try 
block did not produce an error, we can use an else 
block.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
print("Thou shall not giveth a 0")

else:
print(f"Your code is {y}")
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You can fail silently if you want
● Sometimes you do not want to inform the user that an 

error was produced, so you can supply pass to the 
except block.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
pass

else:
print(f"Your code is {y}")
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Use exception if unsure type
● If you are unsure of the type, or have potentially 

multiple exception types that you want to act similarly, 
use Exception as type.

try:
x = int(input("Enter a number: "))
y = 10 / x

except Exception:
pass

else:
print(f"Your code is {y}")
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Let’s practice
● Write a program that will safely divide two user 

provided numbers, and will continuously prompt until 
success.
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Debugging
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We make mistakes
● In fact the first time you write code there will be 

problems.

● These bugs, we need a way to hunt them down.

● Debugging!
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2 Main Techniques
1) Validating intermediate variables states with printing.

2) Using purpose built debugger.
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Printing
● Sometimes printing the state of variables at a given 

moment can help spot bugs.

def find_largest(numbers):
    largest = 0
    for num in numbers:
        if num > largest:
            largest = num
    return largest

# Test case
print(find_largest([-10, -5, -20]))

0
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Adding print statements
def find_largest(numbers):
    largest = 0
    print("Initial largest:", largest)
    for num in numbers:
        print("Checking number:", num)
        if num > largest:
            print(f"{num} is greater 

than {largest} → updating largest")
            largest = num
        else:
            print(f"{num} is not greater than {largest}")
    return largest

# Test case
print("Result:", find_largest([-10, -5, -20]))

Initial largest: 0
Checking number: -10
-10 is not greater 
than 0
Checking number: -5
-5 is not greater 
than 0
Checking number: -20
-20 is not greater 
than 0
Result: 0
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Using Python pdb
def find_largest(numbers):
    largest = 0
    for num in numbers:

  breakpoint()
        if num > largest:
            largest = num
    return largest

# Test case
print(find_largest([-10, -5, -20]))

python main.py

-> breakpoint()
(Pdb) p largest
0
(Pdb) p num
-10
(Pdb) p num > largest
False
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) p num
-10
(Pdb) n
-> breakpoint()
(Pdb) p num
-5
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) c
-> breakpoint()
(Pdb) p num
-20
(Pdb) c
0

https://docs.python.org/3/library/pdb.html
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Common debugger commands
● n (next): go to next line of current function.

● s (step): go to very next line (if function call → go inside).

● p expression: prints the expression (vars included).

● c (continue): go to the next breakpoint.

● And so much more you can use from the docs. 
● https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html
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Let’s practice
● Try to solve the bug in the following code which you can 

find on canvas.

def find_max(nums):
    max_val = nums[0]
    for i in range(1, len(nums) - 1):
        if nums[i] > max_val:
            max_val = nums[i]
    return max_val
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And some more
def repeat_message(message, times):
    return message * times

msg = input("Enter a message: ")
count = input("How many times? ")
print(repeat_message(msg, count))

def sum_even(numbers):
    total = 0
    for num in numbers:
        if num % 2 == 1:
            total += num
    return total

print("Sum of even numbers:", sum_even([1, 2, 3, 4, 5, 6]))
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