
INFO5002: Intro to Python for Info Sys
Week 6

Slides created by: Zachary Doucet



 2

Week 6

I. Encapsulation

II.  Modules and Packages

III. Error Handling 

IV. Debugging



 3

Admin



 4

Key dates
● Final exam Dec 12th 9-12 am same class room.

● Project Dec 14 at 11:59 pm.

● Pizza party after class today from 1-2:30 pm.



 5

Recap



 6

Introspection to verify type
● type

● callable

x = "orange"
type(x)

x = 123
type(x)

x = 3.14
type(x)

if type(x) is str:
print("I am string")

elif type(x) is int:
print("I am int")

elif type(x) is float:
print("I am float")

x = "banana"
callable(x)

def add(x, y):
return x + y

x = add
callable(x)

Source: Wikimedia



 7

Classes to group functionality
● Functions group operations together and collections 

group data together.

● Classes allow you to collect functions and variables 
together.

Source: City of Toronto Archives

class Car:
... 

car = Car()



 8

The holy grail

“Everything is an object. Treat everything 
like an object.”

Source: Monty Python and the Holy Grail



 9

Inheritance
● Inheritance is a way to save code by copying all the 

methods and attributes from the parent to the child. 

class Animal:
def __init__(self, name):

self.name = name
   

class Dog(Animal):
def woof():

print("Woof!")
   

animal = Animal("Timmy")
print(animal.name)

dog = Dog("Timmy")
print(dog.name)
Dog.woof()



 10

Polymorphism
● Super-class group of objects can all execute a method 

from the same super-class. 

class Animal:
def __init__(self, name):

self.name = name

def speak(self):
print("Squeek")

   

class Dog(Animal):
def speak(self):

print("Woof!")
   

class Cat(Animal):
def speak(self):

print("Meow.")
   

x = Animal()
y = Dog()
z = Cat()
x.speak()
y.speak()
z.speak()



 11

Encapsulation



 12

I want to protect my data!
● It is generally good practice to expose only the 

minimum amount of data necessary. 

class BankAccount:
id = 0
name = ""
balance = 0
credit = 0
interest_rate = 0
overdrafted = False
login_dates = []
   

Maybe don’t need to have all of 
these attributes publicly 
exposed.



 13

You can hide with encapsulation
● Encapsulation is the process of selectively hiding data 

between components.

– Protect from unauthorized or accidental mutations.

– Add validation to getting and mutating.

– Hiding business logic.



 14

There are three access modifiers
● Public: any component can access (default).

● Protected: class and subclasses.

● Private: only the class.

Only private access modifer enforced (through name mangling). 
It is however good practice to use protected.



 15

The mode is defined through 
frontal underscores

● Public: no underscore.

● Protected: single underscore.

● Private: double underscore.

class BankAccount:
id = 7312835182 # Public
_name = "John Doe" # Protected
__balance = 0 # Private



 16

Getter
● Private attributes cannot be accessed outside the class 

and thus must be shared to a method known as a 
getter.

● Can add logic to the getter.

class BankAccount:
def __init__(self, initial_balance):

self.__balance = initial_balance
def get_balance():

return self.__balance

We can get 
attribute’s 
value 
without 
being able 
to mutate.



 17

Setter
● Private attributes cannot be mutated outside the class 

and thus must be updated through a method known as 
a setter.

● Can add logic to the setter.

class BankAccount:
def __init__(self, initial_balance):

self.__balance = initial_balance
def set_balance(new_balance):

if new_balance < 0:
self.overdraft = True
return

self.__balance = new_balance



 18

Let’s Practice
● Create a class BankAccount which has a constructor 

that takes in an initial balance. The balance should be 
updated only through two methods deposit and 
withdraw which both take in a number representing 
deposit or withdrawal amount. Add logic to guard 
against overdraft.



 19

Modules and Packages
PCC 149-152, 173-179



 20

Terminology
● A module is a Python file w/ reusable elements.

– Classes and functions

● A package is a folder with at least 1 module and a 
special __init__.py file.

● You can nest packages into packages which become 
sub-packages.



 21

Example
/

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

code directory
package
special init file
module
sub-package
special init file
module
entry point
not a module



 22

Use init to expose
/ 

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

# /algorithms/math/basic.py
import math

def add(x, y):
    """Add y to x"""
    return x + y
def sub(x, y):
    """Subtract y from x"""
    return x - y
def mul(x, y):
    """Multiply x by y"""
    return x * y
def div(x, y):
    """Divide x by y"""
    return x / y
def sqrt(x):

"""Square root x"""
    return math.sqrt(x)

# /algorithms/math/__init__.py

from .basic import add, sub, 
mul, div, sqrt

# /algorithms/euclidean.py

from .math import mul, sqrt, 
add

def hypotenuse(x, y):
    return sqrt(add(mul(x, x), 

mul(y, y)))



 23

Import package as normal
/ 

algorithms/
__init__.py
euclidean.py
math/

__init__.py
basic.py

main.py
screen.py

# /main.py

from algorithms import 
hypotenuse, add

print("The hypotenuse of 
the 3, 4 triangle is: " + 
str(hypotenuse(3, 4)))

print("1 + 1 = " + 
str(add(1, 1)))

# /algorithms/__init__.py

from .euclidean import 
hypotenuse
from .math import add

# /algorithms/euclidean.py

from .math import mul, sqrt, 
add

def hypotenuse(x, y):
    return sqrt(add(mul(x, x), 

mul(y, y)))



 24

We import with from import

from package import module1, module2, module3, ...

from keyword import keyword

package name
package’s module names



 25

Different packages
● Import python std packages via their name

● Import external packages via their name

– Will need to install first with pip

– Can see all packages from pypi.org 

● Import user defined packages via absolute

● Import user defined packages via relative 

from math

from numpy

pip install numpy

from algorithms.math

from .math

https://pypi.org/


 26

I want to import everything

from package import *

* wildcard



 27

Entry file special case
● The entry file is not loaded as a module and for that 

reason when you run it you cannot use relative imports 
as it is the start. 

● Always use absolute paths.



 28

Let’s practice
calculator_project/

 main.py├──

 calculator/└──

     __init__.py├──

     add.py├──

     subtract.py├──

     multiply.py├──

     divide.py└──

●

Design the following project on your 
computer where when main executes 
it asks the user to input a first number, 
second number, and finally the 
operation to perform.



 29

Error Handling
PCC 192-199



 30

Sometimes our code crashes
● When executing some code Python may not know 

what to do and throw an exception.

● If an exception is not caught, then Python crashes the 
runtime.

x = 0
y = 10 / x

ZeroDivisionError: division by zero



 31

We protect our at risk with try-
except.

● If an exception may be thrown it is best to surround it 
with a try-except block specifying the expected 
exception.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
print("Thou shall not giveth a 0")



 32

Use else to set what happens on 
non exception.

● If we have specific code we only want to run if the try 
block did not produce an error, we can use an else 
block.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
print("Thou shall not giveth a 0")

else:
print(f"Your code is {y}")



 33

You can fail silently if you want
● Sometimes you do not want to inform the user that an 

error was produced, so you can supply pass to the 
except block.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
pass

else:
print(f"Your code is {y}")



 34

Use exception if unsure type
● If you are unsure of the type, or have potentially 

multiple exception types that you want to act similarly, 
use Exception as type.

try:
x = int(input("Enter a number: "))
y = 10 / x

except Exception:
pass

else:
print(f"Your code is {y}")



 35

Let’s practice
● Write a program that will safely divide two user 

provided numbers, and will continuously prompt until 
success.



 36

Debugging



 37

We make mistakes
● In fact the first time you write code there will be 

problems.

● These bugs, we need a way to hunt them down.

● Debugging!



 38

2 Main Techniques
1) Validating intermediate variables states with printing.

2) Using purpose built debugger.



 39

Printing
● Sometimes printing the state of variables at a given 

moment can help spot bugs.

def find_largest(numbers):
    largest = 0
    for num in numbers:
        if num > largest:
            largest = num
    return largest

# Test case
print(find_largest([-10, -5, -20]))

0



 40

Adding print statements
def find_largest(numbers):
    largest = 0
    print("Initial largest:", largest)
    for num in numbers:
        print("Checking number:", num)
        if num > largest:
            print(f"{num} is greater 

than {largest} → updating largest")
            largest = num
        else:
            print(f"{num} is not greater than {largest}")
    return largest

# Test case
print("Result:", find_largest([-10, -5, -20]))

Initial largest: 0
Checking number: -10
-10 is not greater 
than 0
Checking number: -5
-5 is not greater 
than 0
Checking number: -20
-20 is not greater 
than 0
Result: 0



 41

Using Python pdb
def find_largest(numbers):
    largest = 0
    for num in numbers:

  breakpoint()
        if num > largest:
            largest = num
    return largest

# Test case
print(find_largest([-10, -5, -20]))

python main.py

-> breakpoint()
(Pdb) p largest
0
(Pdb) p num
-10
(Pdb) p num > largest
False
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) p num
-10
(Pdb) n
-> breakpoint()
(Pdb) p num
-5
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) c
-> breakpoint()
(Pdb) p num
-20
(Pdb) c
0

https://docs.python.org/3/library/pdb.html


 42

Common debugger commands
● n (next): go to next line of current function.

● s (step): go to very next line (if function call → go inside).

● p expression: prints the expression (vars included).

● c (continue): go to the next breakpoint.

● And so much more you can use from the docs. 
● https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html


 43

Let’s practice
● Try to solve the bug in the following code which you can 

find on canvas.

def find_max(nums):
    max_val = nums[0]
    for i in range(1, len(nums) - 1):
        if nums[i] > max_val:
            max_val = nums[i]
    return max_val



 44

And some more
def repeat_message(message, times):
    return message * times

msg = input("Enter a message: ")
count = input("How many times? ")
print(repeat_message(msg, count))

def sum_even(numbers):
    total = 0
    for num in numbers:
        if num % 2 == 1:
            total += num
    return total

print("Sum of even numbers:", sum_even([1, 2, 3, 4, 5, 6]))


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

