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Key dates

e Final exam Dec 12t 9-12 am same class room.
 Project Dec 14 at 11:59 pm.

* Pizza party after class today from 1-2:30 pm.



Recap



Introspection to verify type

X 123 X 3.14
type(x) type(x)

e tvpe R "orange"
4 type(x)

if type(x) str:
print("I am string")
elif type(x) int:

callable T e I

elif type(x) float:
print("I am float")

def add(x, y):
return x + vy

X "banana"

callable(x)

X add
callable(x)

Source: Wikimedia



Classes to group functionality

 Functions group operations together and collections

group data together.

* Classes allow you to collect functions and variables

together.

class Car:

car Car()

Source: City of Toronto Archives



The holy grail

“Everything is an object. Treat everything

like an ob

Source: Monty Python and the Holy Grail



Inheritance

* Inheritance is a way to save code by copying all the

methods and attributes from the parent to the child.

class Animal: class Dog(Animal):
def _init_ (self, name): def woof():
self.name = name print("Woof!")

animal = Animal("Timmy") dog = Dog("Timmy")
print(animal.name) print(dog.name)
Dog.woof ()




Polymorphism

* Super-class group of objects can all execute a method

from the same super-class.

class Dog(Animal):
def speak(self):

Ani : :
class Animal orint("Woof!")

def _init_ (self, name):
self.name name

class Cat(Animal):

def speak(self): def speak(self):
print("Squeek") print("Meow.")




Encapsulation
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1 want to protect my data!

* |tis generally good practice to expose only the

minimum amount of data necessary.

class BankAccount:

id = 0 . Maybe don't need to have all of
name
balance = 0 these attributes publicly

credit 0

lnterest rate 0
overdrafted False
login_dates = []

exposed.
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You can hide with encapsulation

« Encapsulation is the process of selectively hiding data

between components.
- Protect from unauthorized or accidental mutations.
- Add validation to getting and mutating.

- Hiding business logic.
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There are three access modifiers

 Public:any component can access (default).
 Protected: class and subclasses.

* Private: only the class.

Only private access modifer enforced (through name mangling).
It is however good practice to use protected.
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The mode is defined through
frontal underscores

 Public: no underscore.
* Protected: single underscore.

e Private: double underscore.

class BankAccount:
1d 7312835182 # Public

_name "John Doe" # Protected
__balance 0 # Private
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Getter

Private attributes cannot be accessed outside the class

and thus must be shared to a method known as a

etter. class BankAccount: We can get
J def __init_ (self, initial_balance): S
R attribute’s
self._ balance 1nitial_balance VEllE
def get_balar{fce();) . 4 without
return selt.__Dbalance being able
to mutate.

« Can add logic to the getter.
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Setter

e Private attributes cannot be mutated outside the class

and thus must be updated through a method known as

=RSISINNSIM class BankAccount:
def init_ (self, initial_balance):
self.__balance initial_balance
def set balance(new balance):
1f new_balance 0:

self.overdraft True

return
self._ balance new_balance

 Can add logic to the setter.
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Let’s Practice

* Create a class BankAccount which has a constructor
that takes in an initial balance. The balance should be
updated only through two methods deposit and
withdraw which both take in a number representing
deposit or withdrawal amount. Add logic to guard

against overdraft.
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Modules and Packages

PCC 149-152, 173-179
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Terminology

« A module is a Python file w/ reusable elements.

- Classes and functions

A package is a folder with at least 1 module and a

special __init__.py file.

* You can nest packages into packages which become

sub-packages.
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algorithms/
__Init_.py
euclidean.py
math/
__Init__.py
basic.py
main.py
screen.py

code directory
package
special init file
module
sub-package
special init file
module

entry point
not a module
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Use init to expose

algorithms/ e
__Init_.py .basic

euclidean.py . :
add(x, y): mul, div, sqrt
ath/ mmnn Add y to X mmomn

_init_.py

| basic.py return x + y
main.py sub(x, y):

screen.py Subtract y from x

return X y .math

mul(x, y): add

"""Multiply x by y"""

return x y

div(x, y): def hypotenuse(x, y):
"""Divide x by y""" return sqrt(add(mul(x, x),
return x /vy mul(y, v)))

sqrt(x):
"""Square root x
return math.sqrt(x)




Import package as normal

algorithms/
_Init_.py _ . _
euclidean.py algorithms ) euclidean
ypotenuse
math/ hypotenuse, add o
__init_.py .ma
basic.py : .
main.py print("The hypotenuse of

screen.py the 3, 4 triangle is: "
str(hypotenuse(3, 4)))

.math mul, sqrt,
add

print("1 + 1 =
str(add(1, 1)))
def hypotenuse(x, y):

return sqrt(add(mul(x, x),
mulCy, y)))
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We import with from import

from keyword  import keyword

. .

package modulel, module2, module3,

f \

package name
package's module names
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Different packages

Import python std packages via their name

Import external packages via their name

- Will need to install first with pip

- Can see all packages from pypi.org

algorithms.math

Import user defined packages via absolute

Import user defined packages via relative
25


https://pypi.org/

] want to import everything

*wildcard
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Entry file special case

* The entry file is not loaded as a module and for that
reason when you run it you cannot use relative imports

as It Is the start.

* Always use absolute paths.
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Let’s practice

calculator_project . . :
project/ Design the following project on your

main.py .
computer where when main executes

L— calculator/ , , ,
it asks the user to input a first number,
— __init__.
i second number, and finally the
— add.py .
operation to perform.
— subtract.py

— multiply.py
L divide.py 28



PCC 192-199
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Sometimes our code crashes

* When executing some code Python may not know

what to do and throw an exception.

* |If an exception is not caught, then Python crashes the

runtime.
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We protect our at risk with try-
except.

e |If an exception may be thrown it is best to surround it
with a try-except block specifying the expected

exception.

int(input("Enter a number: "))

y 10 X
except ZeroDivisionError:
print("Thou shall not giveth a 0")
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Use else to set what happens on
non exception.

* |If we have specific code we only want to run if the try

block did not produce an error, we can use an else

block.
try:
X = int(input("Enter a number: "))
y 10 X

except ZeroDivisionError:

print("Thou shall not giveth a 0")
else:

print(f"Your code is {y}")
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You can fail silently if you want

e Sometimes you do not want to inform the user that an
error was produced, so you can supply pass to the

except block.

try:
X = int(input("Enter a number: "))
y 10 X

except ZeroDivisionError:
pass

else:
print(f"Your code is {y}")

33



Use exception if unsure type

If you are unsure of the type, or have potentially
Mmultiple exception types that you want to act similarly,

use Exception as type.

try:
X = int(input("Enter a number: "))
y 10 X

except Exception:
pass
else:
print(f"Your code is {y}")
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Let’s practice

* Write a program that will safely divide two user
provided numbers, and will continuously prompt until

SUcCcess.
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We make mistakes

* |n fact the first time you write code there will be

problems.
* These bugs, we need a way to hunt them down.

« Debugging! P v
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2 Main Techniques

1) Validating intermediate variables states with printing.

2) Using purpose built debugger.
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Printing

e Sometimes printing the state of variables at a given

moment can help spot bugs.

def find_largest(numbers):
largest 0
for num numbers:
1f num > largest: 0
largest num
return largest

print(find_largest([-10, -5,
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Adding print statements

Initial largest: 0

def find_largest(numbers):

largest 0 Checking number: -10
. N e " -10 is not greater
print("Initial largest:", largest) than o
for num numbers: Checking number: -5
print("Checking number:", num) ;ﬁlﬁwnotgfﬂ“ff
) an
1f num, lafgeSt' i Checking number: -20
print(f"{num} is greater -20 is not greater

than {largest} > updating largest") than 0
largest = num Result: 0
else:
print(f"{num} is not greater than {largest}")
return largest

# Test case
print("Result:", find largest([-10, -5, -20]))




Using Python pdb

def find_largest(numbers):
largest 0
for num numbers:
breakpoint()
1f num > largest:
largest num
return largest

print(find_largest([-10, -5, -20]))

python main.py

— breakpoint()

(Pdb) p largest

0

(Pdb) p num

-10

(Pdb) p num > largest
False

(Pdb) n

— if num > largest:
(Pdb) n

— for num in numbers:
(Pdb) p num

-10

(Pdb) n

— breakpoint()
(Pdb) p num

-5

(Pdb) n

— 1f num > largest:
(Pdb) n

— for num in numbers:
(Pdb) ¢

— breakpoint()
(Pdb) p num

-20

(Pdb) c

0



https://docs.python.org/3/library/pdb.html

Common debugger commands

N (next): go to next line of current function.

S (step): go to very next line (if function call » go inside).

e D expression: prints the expression (vars included).

c (continue): go to the next breakpoint.

 And so much more you can use from the docs.

 https://docs.python.org/3/library/pdb.html
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https://docs.python.org/3/library/pdb.html

Let’s practice

* Try to solve the bug in the following code which you can

find on canvas.

def find max(nums):
max_val = nums[0]
for 1 range(1, len(nums) - 1):

if nums[1i] max_val:
max_val nums[1]
return max_val

43



And some more

def repeat_message(message, times):
return message times

msg = input("Enter a message: ")
count = input("How many times? ")
print(repeat _message(msg, count))

def sum_even(numbers):
total 0
for num numbers:
1f num 2 1:
total num
return total

print("Sum of even numbers:", sum_even([1, 2, 3, 4, 5, 6]))
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