
INFO5002: Intro to Python for Info Sys
Week 7

Slides created by: Zachary Doucet

 2

Week 7
I. Testing

II. I/O

III. Scraping

 3

Recap

 4

Encapsulation
● Expose minimally.

class BankAccount:
def __init__(self, initial):

self.__balance = initial

def deposit(self, amt):
self.__balance += amt

def withdraw(self, amt):
if amt < self.__balance:

self.__balance -= amt

● Public (everyone)
● Protected (me and my

children)
● Private (only me)

 5

We import with from import

from package import component1, component2, component3, ...

from keyword import keyword

package name
package’s reusable component names

Module vs package vs sub-package.

from package import *

 6

We protect our at risk with try-
except.

● Code that can produce exceptions should be protected.

try:
x = int(input("Enter a number: "))
y = 10 / x

except ZeroDivisionError:
pass

else:
print(f"Your code is {y}")

 7

Debugging

 8

Adding print statements
def find_largest(numbers):
 largest = 0
 print("Initial largest:", largest)
 for num in numbers:
 print("Checking number:", num)
 if num > largest:
 print(f"{num} is greater

than {largest} → updating largest")
 largest = num
 else:
 print(f"{num} is not greater than {largest}")
 return largest

Test case
print("Result:", find_largest([-10, -5, -20]))

Initial largest: 0
Checking number: -10
-10 is not greater
than 0
Checking number: -5
-5 is not greater
than 0
Checking number: -20
-20 is not greater
than 0
Result: 0

 9

Using Python pdb
def find_largest(numbers):
 largest = 0
 for num in numbers:

 breakpoint()
 if num > largest:
 largest = num
 return largest

Test case
print(find_largest([-10, -5, -20]))

python main.py

-> breakpoint()
(Pdb) p largest
0
(Pdb) p num
-10
(Pdb) p num > largest
False
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) p num
-10
(Pdb) n
-> breakpoint()
(Pdb) p num
-5
(Pdb) n
-> if num > largest:
(Pdb) n
-> for num in numbers:
(Pdb) c
-> breakpoint()
(Pdb) p num
-20
(Pdb) c
0

https://docs.python.org/3/library/pdb.html

 10

Testing
PCC 209-223

 11

Unit tests
● Test the smallest functional unit.

● Tests should be independent.

● Sum of tests should cover as many lines of code (have
high coverage).

 12

Python unittest
● assertEqual(a, b): see if a == b
● assertTrue(x): see if bool(x) == True
● assertIsInstance(a, b): see if a is instance of b
● assertIsNone(x): see if x == None
● assertFalse(x): see if bool(x) == False
● assertIs(a, b): see if a is b
● assertIn(a, b): see if a in b

 13

Concepts
● Test case: individual unit of testing.

● Test suite: group of test cases and test suites.

● Test fixture: any code that runs before or after tests to
prepare or cleanup.

● Test runner: orchestrates the execution of tests and
returns result to user.

 14

import unittest

def add(a, b):
 return a + b

class TestAddFunction(unittest.TestCase):
 def test_add_zeroes(self):
 self.assertEqual(add(0, 0), 0)

 def test_add_negative_numbers(self):
 self.assertEqual(add(-5, -6), -11)

 def test_add_mixed_numbers(self):
 self.assertEqual(add(5, -6), -1)
 self.assertEqual(add(-9, 3), -6)

if __name__ == '__main__':
 unittest.main()

Will run all test
cases that inherit
unittest.TestCase

Individual unit
test must start
with the letters
test_ and have at
least 1 assert.

A test case named
TestAddFunction
with 3 unit tests.

 15

import unittest

class CompoundInterest:
 def __init__(self,
start, rate):
 self.curr = start
 self.rate = rate

 def compound(self):
 self.curr +=
self.curr * self.rate

class TestCompoundInterest(unittest.TestCase):
 def setUp(self):
 self.ci = CompoundInterest(100, 0.1)

 def tearDown(self):
 pass

 def test_first_compound(self):
 self.ci.compound()
 self.assertEqual(self.ci.curr, 110)

 def test_two_compound(self):
 self.ci.compound()
 self.ci.compound()
 self.assertEqual(self.ci.curr, 121)

if __name__ == "__main__":
 unittest.main()

Code runs before each test

Code runs after each test

 16

Testing for exceptions
import unittest

def div(x, y):
 return x / y

class TestDiv(unittest.TestCase):
 def test_div_0_exception(self):
 with self.assertRaises(ZeroDivisionError):
 div(10, 0)

if __name__ == "__main__":
 unittest.main()

Create a block of
self.assertRaises(Exc
eptionType) to test if
the block throws the
exception

 17

Let’s practice
In canvas you will find a file with some code written. I
want you to create a new file test.py which will have
unit tests that together have 100% coverage of the file’s
functionalities.

 18

Why bother?
● If we test out code as we go why create unit tests?

● Because if we change it later we may break it.

– Unit tests allow us to detect if new code breaks
existing behaviour.

 19

I/O

 20

So far all data has been in
memory

● We have been creating variables that hold data in our
code.

● This data is not persistent and when the program stops
running all of the data is released.

 21

Keep persistence with IO
● Input/Output (I/O) acts as an interface between your

code and the operating system’s file system.

● Three types:

– text (string)

– binary (bytes): can store non-text data

– Raw: rarely used

 22

Load text with open r

file = open("/path/to/my-file.text", "r", encoding="utf-8")

Specify file’s encoding
defaults to OS’s

locale.getencoding()File object

Modeopen keyword

Path to file

 23

File modes
Character Meaning
r reading (default)
w writing, deleting old first
x create new file, fail if already

existing
a writing, appending to old
b binary mode
t text mode (default)
+ suffix, to add on read or write

r+ (read and write w/out deleting file first)
w+ (read and write deleting file first)

 24

Encodings
● Important to specify the file’s encoding that you are

loading. Otherwise your data will be unrecognisable at
worst or crash at best.

● Popular encodings: ascii, utf-8, utf-16, utf-32.

 25

Encoding matters example
file = open("test_file.txt", "w", encoding="utf-8")
file.write("Welcome to class")
file.close()

file2 = open("test_file.txt", "r", encoding="utf-8")
print(file2.read())
file2.close()

file3 = open("test_file.txt", "r", encoding="utf-16")
print(file3.read())
file3.close()

 File "/usr/lib64/python3.13/encodings/utf_16.py", line 67, in _buffer_decode
 raise UnicodeDecodeError("utf-16", input, 0, 2, "Stream does not start with BOM")
UnicodeDecodeError: 'utf-16' codec can't decode bytes in position 0-1: Stream does not start with BOM

 26

Load binary with open rb

file = open("/path/to/my-file.text", "rb")

 27

Load raw with open rb no
buffering

file = open("/path/to/my-file.text", "rb", buffering=0)

 28

What to do with file objects?
● close(): close the file

● readline(): read one line from file

● readlines(): return list of lines from file

– for line in file:

● read(size=-1): read size number of bytes

● write(data): write data

 29

Move file cursor
● seek(offset, whence=os.SEEK_SET): change the stream

number of bytes from relative position set with whence.

– os.SEEK_SET: start of stream (offset >= 0)

– os.SEEK_CUR: current position

– os.SEEK_END: end of stream (offset <= 0, usually)

 30

Let’s practice
Create a function process_student_grades that loads a
file you will find on canvas and creates a new file
output.txt which has number of 0-9% on one line,
number of 10-19% on one line, …, number of 90-99% on
one line, number of 100% on one line, and the average
on the final line. Use utf-8 encoding.

 31

It is annoying have one data per
line!

● There are two commonly used ways to store data

1. CSV (Comma Separated Values)

2. JSON (Javascript Object Notation)

 32

CSV
● Good for simple data.

● Created by separating values with a comma.

PCC 330-341

id,name,num_runways,num_gates
YVR,"Vancouver International Airport",3,101
YXX,Abbotsford International Airport,2,

Optional header
Full entry
Entry missing num_gates

 33

Reading CSV files
● Import csv module and create a csv reader with a file object.

● But for the line you need to know which index the data is.

import csv

file = open("csv-1.csv", "r")
reader = csv.reader(file)
header = next(reader)
for line in reader:
 print(line)

Header first line (if exists)
For all the other lines
Do something here

Create csv reader

 34

Use DictReader
● Same as regular reader but will have each line be a

dictionary instead of list with the keys as the header (or
anything else you specify).
import csv

file = open("csv-1.csv", "r")
reader = csv.DictReader(file)
for line in reader:
 print(line["num_runways"])

For all lines
Do something here

Create csv dictionary reader

 35

Similarly can write

import csv

file = open("csv-1.csv", "w")
fieldnames = ["id", "name", "num_runways", "num_gates"]
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader()
writer.writerow({"id": "YVR", "name": "Vancouver Intl
Airport", "num_runways": 3, "num_gates": 101})

import csv

file = open("csv-1.csv", "w")
writer = csv.writer(file)
writer.writerow(["id", "name", "num_runways", "num_gates"])
writer.writerow(["YVR", "Vancouver Intl Airport", 3, 101])

 36

Let’s practice
Create a class Weather which has a constructor that takes a path to
the daily temperature CSV file and loads the data. Create a few
functions:

● average_high: which returns the average high (deg C).

● average_low: which returns the average low (deg C).

● average_max_gust: which returns avg max gust (km/hr).

All functions optionally take month to specify for a month.

 37

JSON
● Good for complex structured data.

● Javascript Object Notation which features a Python
dictionary-like structure.

PCC 201-204

{
"airports": [

{
"id": "YVR",
"name": "Vancouver Intl Airport",
"num_runways": 3,
"num_gates”: 101,

}
]

}

 38

Write with json dump
import json

airports = [
 {"id": "YVR", "name": "Vancouver Intl
Airport", "num_runways": 3, "num_gates": 101}
]

file = open("data.json", "w")
contents = json.dump({"airport": airports},
file)
file.close()

 39

Read with json load
import json

file = open("data.json", "r")
contents = json.load(file)
print(contents)
file.close()

{'airport': [{'id': 'YVR', 'name': 'Vancouver Intl Airport',
'num_runways': 3, 'num_gates': 101}]}

 40

Let’s practice
Create a class Client which has a constructor that will ask
for the user’s first name, last name, date of birth, and
phone number if it has not already asked and the data file
does not exist. If exists load the data to the right attributes.

 41

Web Scraping

 42

Not all data are in files
● In this case we need to use web scraping to get and

save web data.

● Website data is stored as HTML which we can download
and process with the help of two modules: requests
(downloading) and beautifulsoup4 (processing).

● We will learn more about HTML later.

 43

Find the tags, classes, ids

<div class=”col-md-4 country”> <h3 class=”country-name”> <div class=”country-info”>

https://www.scrapethissite.com/pages/simple/

 44

response =
requests.get("https://www.scrapethissite.com/pages/simple/")
soup = BeautifulSoup(response.text, "html.parser")
countries = []
for country in soup.find_all("div", "country"):
 country_name = country.find("h3", "country-
name").get_text(strip=True)
 country_data = country.find("div", "country-info")
 country_capital = country_data.find("span", "country-
capital").get_text(strip=True)
 country_population = country_data.find("span", "country-
population").get_text(strip=True)
 country_area = country_data.find("span", "country-
area").get_text(strip=True)
 countries.append(
 { "name": country_name, "capital": country_capital,
 "population": country_population, "area": country_area,
 })

print(countries)

 45

Let’s practice
Create a class Hockey which has an empty constructor
which will scrape the site: https://www.scrapethissite.com/p
ages/forms/. Your goal is to take all the data and have it
loaded into a python list and save as an attribute.

https://www.scrapethissite.com/pages/forms/
https://www.scrapethissite.com/pages/forms/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

