
INFO5002: Intro to Python for Info Sys
Week 8

Slides created by: Zachary Doucet

 2

Week 8

I. API

II. Regular Expressions

III. Internet

IV. HTML

 3

Recap

 4

Unit tests
● Test individual smallest functioning with hopefully

maximal coverage.

● assertEqual(a, b): see if a == b

● assertRaises(ExceptionType)

● Create a class inheriting from unittest.TestCase with
every unit test as a funciton starting with test_

 5

I/O
● file = open(filename, modes)

● modes: r, w, x, a, b, + (suffix)

● for line in file:

● write(data): write data

● Read CSV with csv.reader or csv.DictReader

● Read and write Json with json.load and json.dump

 6

Web Scraping
● Sometimes need to scrape from web.

● Use requests to fetch webpage by passing url and
BeautifulSoup4 to parse web page by searching the
text through tags, classes, and ids.

 7

API Integration
PCC 355-368

 8

To cover
● HackerNews API 368-371

 9

Interface between codebases
● We have seen loading data through files, csv, json, and

html => All different formats.

● A general format of sharing information is termed an
API.

● API is user defined and format shared w/ others to use.

 10

Hacker News API
1) Read the docs.

2) Discover what to call to get the info you want.

3) Learn how to call such an API.

4)Learn what is the output of the API.

https://github.com/HackerNews/API

 11

import requests

url = "https://hacker-
news.firebaseio.com/v0/item/8863.
json"

response = requests.get(url)
print(f"Response code:
{response.status_code}")

response_dict = response.json()
print(f"Response:
{response_dict}")

title = response_dict["title"]
print(title)

 12

Let’s practice
Hacker News also has an API endpoint “https://hacker-
news.firebaseio.com/v0/topstories.json” which returns the
top news stories id’s as an array. Using this and the
previous “https://hacker-news.firebaseio.com/v0/item/
{ID}.json” endpoint find all the top news titles and by which
author.

 13

Regular Expressions
https://docs.python.org/3/howto/regex.html

 14

A mini language in Python
● Regular expressions (regex) is a language applied to

strings that allow for the generation of rules.

● Regex makes it easy to verify if user input is of a certain
type. e.g. an email address should have an “@” and a “.
{something}”.

 15

Patterns
● Characters match themselves except for a few key characters

which are called metacharacters.
“test” matches any string that is exactly “test”, “ test” not good.

● You can define an option (character class) with brackets.
Metacharacters don’t mean anything inside brackets.
“[ab][de]” matches strings “ad”, “ae”, “bd”, “be”

● Can complement the character class with ^ at start.
“angel[^a]” matches everything that begins with “angel” except
for “angela”

 16

- and \
● You can create a range with -.

”[a-z]”

● \ is an escape character and allows you to match any of
the escape characters by prefixing it.
”\[” “\\”

 17

Common escapes
● \d: any decimal digit: [0-9]

● \D: any non digit: [^0-9]

● \s: any whitespace character: [\t\n\r\f\v]

● \S: any non-whitespace character: [^ \t\n\r\f\v]

● \w: any alphanumeric character: [a-zA-Z0-9_]

● \W: any non-alphanumeric character: [^a-zA-Z0-9_]

 18

Repeating
● *: zero or more times.

● +: one or more times.

● ?: zero or one times.

● {m,n}: at least m and at most n.
”a/{1,3}b” matches “a/b”, “a//b”, “a///b” but not “a////b”

● {m}: exactly m times

 19

In Python

import re

p = re.compile(r"\w*[^z]")
print(p.match("hellotherez"))

Pattern object

Raw string notation

 20

Matching
● match(): determine if exists a match from start of string.

● search(): find any starting location that matches.

● findall(): find all substrings that match and return as list.

● finditer(): find all substrings that match and return as an
iterator.

 21

Match Objects
● match() and search() return either None or a Match

object.

● Match objects have following methods:

– group(): return the matched string

– start(): return starting pos of match.

– end(): return ending pos of match.

– span(): tuple of (start, end)

 22

Metacharacters+
● |: OR: “A|B” => “A”, “B”

● ^: beginning of the line (start of string): “^Hello” => “Hello”

● $: end of the line (end of string): “Bye$” => “Bye”

 23

Let’s practice
● Create a function validate_email which takes in an email

as a string and uses regular expression to validate if it is a
properly formatted email.

● Create a function validate_phone_number which takes
in a phone number as a string and makes sure that it
follows the Canadian convention of (XXX) XXX-XXXX.

 24

Internet

 25

Before the internet, there was...

Source: Wikimedia
Source: Wikimedia

Source: Wikimedia

 26

Source: Wikimedia
Source: Wikimedia

Source: Wikimedia

 27

Tensions were high

Source: Wikimedia

 28

Too high

Source: Wikimedia

 29

For resilience
● The United States military needed to ensure the

continuation of government in case of a nuclear
detonation over Washington DC.

● They developed ARPANET.

Source: Wikimedia

 30

HTML
MDN

 31

The layout
● HTML describes the layout of a webpage. i.e. What is the

content? How is that content organized?

● The webpage is divided into tags which instructs the
browser how to render the content.

● Tags are defined with angled brackets <tag> while a
closing tag is defined with angled brackets with a slash
</tag>.

 32

Basic structure

<!DOCTYPE html>
<html>
 <head></head>
 <body></body>
</html>

Tells the browser the
information it will
received next is
HTML data. Start of html tag

Start of header
section (metadata)

Start of body
section (what is
visualised on
screen)

 33

HTML5 semantic elements
● header: very top of page.

● nav: below header. The navbar.

● main: the main part.

● article: independent self-contained data.

● section: defines a section.

● aside: define content aside some other content.

● footer: very bottom of page.

Source: W3Schools

 34

Text content
● Headers: h1-h6: represent sectional heading.

● Paragraphs: represent regular text.

● Group with div (not displayed but makes it cleaner).

<h1>h1</h1>

<p>Hello world!</p>

<div>
 <p>This is a paragraph</p>
 <p>This is another</p>
</div>

 35

Create lists
<h1>My favourite fruits</h1>

Apples
Bananas
Organges

<h1>Make my famous pie</h1>

Preheat at 500F
Mix wet
Mix dry
Slowly blend wet into dry
Knead
Place in oven for 25 mins

Unordered list

Ordered list

 36

Connecting webpages
Google

Home

Connect to another page on the web

Connect to a home.html page on the current website
e.g. If I am on domain.com/hello.html and click on this link
it will take me to domain.com/home.html

<h1>Search Engines</h1>

 Google
 Bing
 DuckDuckGo

 37

Images
<img
 src="scherzer.jpg"
 alt="Max Scherzer in complete shock"
 width="236"
 height="206"
/>

Where:
local or
remote

Display if
not found

Width in px

Height in px

<img
 src="thisimagenotexist.jpg"
 alt="A beautiful dog jumping through a hoop!"
 width="1920"
 height="1080"
/>

 38

Tables

● <table></table>: creates a table.

● <tr></tr>: table row.

● <td></td>: cell.

● <th></th>: used instead of td for header.

 39

 <table>
 <tr>
 <th>Team</th>
 <th>W</th>
 <th>L</th>
 </tr>
 <tr>
 <td>Toronto Blue Jays</td>
 <td>94</td>
 <td>68</td>
 </tr>
 <tr>
 <td>New York Yankees</td>
 <td>94</td>
 <td>68</td>
 </tr>
 <tr>
 <td>Boston Red Sox</td>
 <td>89</td>
 <td>73</td>
 </tr>
 </table>

 40

Forms: collect user data
● <form></form>: create a form

● <input type=”” />
● type=”text”: single-line input
● type=”radio”: selecting one of many choices
● type=”checkbox”: one or more selections
● type=”submit”: submit button for the form
● type=”button”: display clickable button

 41

● <label for=””></label>: creating an input for input id=for

● <select><option></option></select>: dropdown menu

● <textarea rows=”” cols=””></textarea>: multi-line resizable
input field.

● <button type=””></button>: define a clickable button
● type=”button”: clickable
● type=”submit”: submits form
● type=”reset”: re-initialises form

 42

All input types
● button
● checkbox
● color
● date
● datetime-local
● email
● file
● hidden
● image

● month
● number
● password
● radio
● range
● reset
● search
● submit
● tel

● text
● time
● url
● week

 43

Form submissions
● Form has an action attribute where you give the local or

remote path of what to call to give the data to. Data is passed
as a dictionary with the keys as the inputs’ name attribute.

● Form’s target decides where to display result.

● _blank: new window or tab

● _self: current window

● _parent: in the parent’s frame

● _top: full body of window

 44

 <form action="/scripts/process-form.py" target="_blank">
 <h1>Welcome Form</h1>
 <h2>Part I</h2>
 <label for="fname">First Name</label>
 <input type="text" id="fname" name="fname"/>
 <label for="lname">Last Name</label>
 <input type="text" id="lname" name="lname" />
 <h2>Part II</h2>
 <input type="radio" id="red" name="fav_colour" value="red" />
 <label for="red">Red</label>
 <input type="radio" id="green" name="fav_colour" value="green" />
 <label for="green">Green</label>
 <input type="radio" id="blue" name="fav_colour" value="blue" />
 <label for="blue">Blue</label>
 <h2>Part III</h2>
 <input type="checkbox" id="dog" name="animal1" value="dog" />
 <label for="dog">I have a dog</label>
 <input type="checkbox" id="cat" name="animal2" value="cat" />
 <label for="cat">I have a cat</label>
 <input type="checkbox" id="hamster" name="animal3" value="hamster" />
 <label for="hamster">I have a hamster</label>
 <h2>Finish</h2>
 <button type="submit">Submit Form</button>
 </form>

 45

 46

Metadata

● Metadata is stored in between the head tags.

 <head>
 <title>Mortgage Calculator</title>
 <meta charset="UTF-8">
 <meta name="description" content="Calculate mortgage payment">
 <meta name="keywords" content="Mortgage, Interest, Principal">
 <meta name="author" content="John Doe">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>

 47

Let’s practice
You are to design a personal or fictional website about
yourself or a fictitious character. There will be at least 3
pages: a home page, an about page, and a contact page.
The contact page should feature a form that will send the
request to “localhost:5000”. Keep it quick and simple.
Simply practice using the different tags! Nothing fancy
here.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

