
INFO5002: Intro to Python for Info Sys
Week 9

Slides created by: Zachary Doucet

 2

Week 9
I. CSS

II. Django

 3

Recap

 4

APIs as Interface
● Interface to share data between codebases.

● Is user defined and follows a strict user defined format.

 5

Regular Expressions
● Character classes with [] and the complement with [^].

● Escape sequences with \: e.g \d, \D, \s, \S, \w, \W, \\

● Ranges with -.

● Reptition with *, +, ?, {a, b}, {a,}, {,b}, {x}

● Use in python by import re and creating a pattern object
by passing a regular expression r”” to re.compile

Mini string pattern language

 6

HTML
● HTML describes the layout of a webpage. i.e. What is the

content? How is that content organized?

● The webpage is divided into tags which instructs the
browser how to render the content.

● Tags are defined with angled brackets <tag> while a
closing tag is defined with angled brackets with a slash
</tag>.

 7

HTML Tags
● Headers: <h1></h1> through <h6></h6>

● Paragraph: <p></p>

● Unordered lists:

● Ordered lists:

● Tables: <table><tr><th></th></tr><tr><td></td></tr></table>

● Anchors:

 8

Forms: collect user data
● <form></form>: create a form

● <input type=”” />
● type=”text”: single-line input
● type=”radio”: selecting one of many choices
● type=”checkbox”: one or more selections
● type=”submit”: submit button for the form
● type=”button”: display clickable button

 9

● <label for=””></label>: creating an input for input id=for

● <select><option></option></select>: dropdown menu

● <textarea rows=”” cols=””></textarea>: multi-line resizable
input field.

● <button type=””></button>: define a clickable button
● type=”button”: clickable
● type=”submit”: submits form
● type=”reset”: re-initialises form

 10

All input types
● button
● checkbox
● color
● date
● datetime-local
● email
● file
● hidden
● image

● month
● number
● password
● radio
● range
● reset
● search
● submit
● tel

● text
● time
● url
● week

 11

CSS
MDN, W3Schools

 12

CSS as style
● CSS is to style as HTML is to layout.

● You first select a tag, class, id, or combination of such and
define a style onto the target.

 13

HTML Integration (3)
I. Write styling in html tag.

II. Can write styling in-between <style></style> tag in html
header.

III. Write in a separate file and load the file.

● I takes precedence over II and II takes precedence over III.

● If I define a style in III it will be overwritten if I redefine in I.

 14

Inline CSS
● Within the html open tag you add an attribute style

where you define declarations as a semi-colon
seperated list of property: value pairs.

<tag style="property1: value1; property2: value2">…</tag>

 15

Internal CSS
● In the head between style tags define semi-colon

separated property: value pairs associated to a selector
between braces.

<head>
<style>

selector {
property1: value1;
property2: value2;

}
</style>

</head>

 16

External CSS
● Create an external css file following same pattern of

internal CSS without need of HTML tags.

● Import into html using link rel=”stylesheet”

● Best practice!

<head>
<link rel="stylesheet" href="styles.css"/>

</head>

 17

Selectors

I. Tag by specifying tag name.

II. Class by specifying .{class-name}

III. Id by specifying #{id}

h1 {
property: value;

}

.dark {
property: value;

}

#big-title {
property: value;

}

 18

Common properties
color Text colour.
background-color The background colour.
background-image e.g url(“image.jpg”)
opacity How opaque. 0 (transparent), 1 (solid)
font-size Size of text (px, em, rem)
font-family Name of typeface (e.g Arial, Times)
font-weight bold, normal, or numbers [1, 1000]
text-align left, center, right
line-height Spacing between lines (e.g 2.5, 3em)

Colours can be written as an html name (e.g. red, blue), as a
hexademical (e.g #ff0000), or in rgb (e.g rgb(255, 99, 71))

* Property names follow American spelling *

https://www.w3schools.com/colors/colors_names.asp

 19

Sizing
Unit Example Relative To
px 12px Nothing (fixed)
% 50% Parent element
em 6em Parent font-size
rem 0.75rem Root font-size
vh/vw 100vw Viewport
Unitless (line-height only) 1.5 Font-size

Be careful of compounding using em! If you have a parent tag with 2em
and your current tag uses 2em that’s a total of 4em.

 20

Box Model

width Elem width
height Elem height
padding Space inside elem
margin Space outside

elem
border Border around

elem
border-radius Rounded corners

 21

margin-left: 1rem;
margin-right: 1rem;
margin-top: 1rem;
margin-bottom: 1rem;

/* short hands */
margin: 10px; /* all sides */
margin: 10px 20px; /* top/bottom left/right */
margin: 10px 20px 30px 40px; /* top right bottom left (clockwise) */

/* padding same pattern */

 22

Layout
● Display controls how elements are rendered on page.

● block: take up full width available, starts on new line (e.g
headers and paragraphs).

● inline: takes up only amount needed, stays on new line until
width full (e.g anchors).

● none: takes up no space on screen (for hiding info).

● flex: create flexible layout (default to horizontal stacking).

.container {
display: block;

}

 23

Let’s practice
Taking the website your designed potentially last class
style it! Or take your ps8 html file and style it!

 24

Django
PCC 373-401

* Using version 5.2.7

 25

A Web Framework
● You can service your website through HTML pages in a

static fashion.

● You can service your web pages dynamically with the
help of a web framework: Django for Python.

● Install with pip install django in your terminal.
pip install django

 26

Starting new project
● You can create a new Django project by typing

● Will create a folder with name calendar_project and a manage.py file
which helps you run django commands.

● Inside are 4 files:
● settings.py: defines the settings Django will use.
● urls.py: defines which pages to use for each browser request.
● wsgi.py (web server gateway interface): helps Django serve the web

pages to the client.
● asgi.py (asynchronous server gateway interface): async version.

django-admin startproject calendar_project .

 27

Starting server
● You can start server with runserver and optionally specify

a port.
python manage.py runserver [port]

 28

View with web browser
http://127.0.0.1:8000
http://localhost:8000

http://127.0.0.1:8000/

 29

Start an app in our project
● Django project works as a collection of apps working

together.

● Can create an app with startapp.

● Creates many files:
● models.py: define the data to manage.
● admin.py: customise admin panel.
● views.py: where you define view functions.

python manage.py startapp calendar_events

 30

Enabling App
● In your settings.py add the created app under

INSTALLED_APPS.

 31

Let’s Practice
I. Install Django

II. Create a new project called ml_project

III. Create an app in ml_project called mad_libs

 32

Models
● Instructs Django how to work with the data in the app.
● Created as a class that inherits from models.Model
● Attributes are assigned to the expected data type found

under models.{date-type}Field
from django.db import models

class Event(models.Model):
 """A Calendar event that the user has."""
 start_datetime = models.DateTimeField()
 end_datetime = models.DateTimeField()
 event_name = models.CharField(max_length=255)
 notes = models.TextField()

Each field will be a
database entry.
More on databases
later.

 33

Field Types
AutoField IntegerField auto increments BigAutoField 64bit auto increments

BigIntegerField 64bit integer BinaryField Raw binary data

BooleanField Boolean CharField Small amt text up to max_length

DateTimeField Python’s datetime.datetime DateField Python’s datetime.date

DurationField Time periods Python’s timedelta DecimalField Fixed-precision decimal number

EmailField CharField that validates email FileField File

FilePathField Filepath choices from path FloatField Floating-point number

GenericIpAddre
ssField

IPv4 or IPv6 address ImageField FileField that validates image

IntegerField Integer JSONField Json

PositiveBigInte
gerField

64bit positive integer PositiveInteger
Field

Positive integer

SlugField Short label SmallAutoField AutoField for smaller nums

 34

SmallIntegerField Small Integer TextField Large text field
TimeField Python’s datetime.time UrlField CharField validates URL
UUIDField Python’s UUID

Can find all with the explanations at:
https://docs.djangoproject.com/en/5.2/ref/models/fields/#field-types

https://docs.djangoproject.com/en/5.2/ref/models/fields/#field-types

 35

Pushing models to DB

python manage.py makemigrations calendar_events

App name

python manage.py migrate

* Do this whenever you make updates to models.py

Migration file tells Django how to update database

Apply any migrations

 36

Admin Site
● Place for admins to modify the site easily.
● Create admin with createsuperuser:

python manage.py createsuperuser

 37

Registering model w/ admin site
● Register models in admin.py.

from django.contrib import admin

from .models import Event

admin.site.register(Event)

 38

Login to admin site
http://localhost:8000/admin

 39

Adding to model

 40

 41

Can have a nice identifier by creating a __str__(self) method
def __str__(self):
 start = timezone.localtime(self.start_datetime).strftime("%b %d, %Y %H:%M")
 end = timezone.localtime(self.end_datetime).strftime("%b %d, %Y %H:%M")
 return f"{self.event_name} ({start} → {end})"

Otherwise you get default:

 42

Relationships: one-to-many
● Many of one thing can be associated to a single other.
● Use a ForeignKey field on the model that can only be

associated to a single other model.

calendar = models.ForeignKey(Calendar,
on_delete=models.CASCADE,
null=True)

 43

from django.db import models
from django.utils import timezone
from django.core.validators import RegexValidator

HEX_COLOR_VALIDATOR = RegexValidator(
 regex=r"[0-9a-fA-F]{6}", message="Enter a valid hex color code, e.g. F100AB"
)

class Calendar(models.Model):
 name = models.CharField(max_length=255)
 colour_hex = models.CharField(max_length=6, validators=[HEX_COLOR_VALIDATOR])
 created_at = models.DateTimeField(auto_now_add=True)

 def __str__(self):
 return str(self.name).title()

class Event(models.Model):
 start_datetime = models.DateTimeField()
 end_datetime = models.DateTimeField()
 event_name = models.CharField(max_length=255)
 notes = models.TextField()
 calendar = models.ForeignKey(Calendar, on_delete=models.CASCADE, null=True)

 44

Other relationships
● One-to-one: use OneToOneField instead of ForeignKey.

● Many-to-many: use ManyToManyField instead of
ForeignKey.

 45

Django Shell
● We saw the python shell we can create with the python

command. We can do something similar to get django’s.

● The shell makes it easier for us to test out code and verify
models without needing to use webpages.

python manage.py shell

 46

Creating pages
1. Define URL(s)

2. Create view(s)

3. Create template(s)

 47

Creating pages
1. Define URL(s)

2. Create view(s)

3. Create template(s)

 48

Generally good practice to have
each app its own urls.py

● Create a urls.py for each app and then include into the
main project’s urls.py

"""Defines URL patterns for
calendar_events"""

app_name = "calendar_events"
urlpatterns = []

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path("admin/", admin.site.urls),
 path("",
include("calendar_events.urls")),
]calendar_events/urls.py

calendar_project/urls.py

 49

Adding URL path

from django.urls import path

from . import views

app_name = "calendar_events"
urlpatterns = [
 # Home page
 path("", views.index, name="index")
]

path("", views.index, name="index")

View function Page name for easy referenceURL

 50

Creating views
● Function that takes in a request object, gets and

processed any data and then returns a rendered web
page.

from django.shortcuts import render

def index(request):
 """The home page for Calendar"""
 return render(request, "calendar_events/index.html")

 51

Creating template
● Template is the HTML that shows what the page looks

like and can slot in any data that was passed by the view.

● Create a folder inside app of templates/{app_name}.

<h1>Welcome to Calendar Central</h1>
<p>Last refreshed: XXXXX</p>

<h2>Calendars:</h2>
<!--- Show calendars --->

 52

Template inheritance
● Some content may be repeated and as such can take

advantage of template inheritance.
<p>Calendar Central</p>
<p>Last refreshed: XXXXX</p>

{% block content %}{% endblock content %}

{% extends 'calendar_events/base.html' %}

{% block content %}
<h1>Welcome to Calendar Central</h1>
<h2>Calendars:</h2>
{% endblock content %}

{% %} are
template tags

calendar_events/templates/calendar_events/base.html

 53

View pass data to template with
context

def index(request):
 calendars = Calendar.objects.prefetch_related(
 Prefetch("event_set",
queryset=Event.objects.order_by("start_datetime"))
).order_by("created_at")

 # Format the current datetime
 now = timezone.localtime(timezone.now())
 last_refreshed = now.strftime("%b %d, %Y at %H:%M:%S")

 context = {"calendars": calendars, "last_refreshed":
last_refreshed}
 return render(request, "calendar_events/index.html", context)

Context is just a Python dictionary

 54

Use data in template w/
{{ name }}

{% extends 'calendar_events/base.html' %} {% block content %}
<h1>Welcome to Calendar Central</h1>

<h2>Calendars:</h2>
{% for calendar in calendars %}
<h3 style="color: #{{ calendar.colour_hex }}">{{ calendar.name }}</h3>

 {% for event in calendar.event_set.all %}
 {{ event }}
 {% endfor %}

{% endfor %} {% endblock content %}

 55

 56

Get url encoded data
● You can get information from a URL into view by

specifying in urls.py.

● event_id is passed to the view function as second
argument.

path("event/<int:event_id>", views.event, name="event")

We expect an integer after event which we will call “event_id”

def event(request, event_id):
 event = Event.objects.get(id=event_id)
 context = {"event": event, "last_refreshed": get_datetime()}
 return render(request, "calendar_events/event.html", context)

 57

All path converters
● str (default): any non-empty string excluding /

● int: 0 or any positive integer

● slug: any slug string (ASCII letters + numbers + hyphen +
underscore)

● uuid: must include dashes and letters lowercase

● path: any non-empty string including /

 58

Let’s Practice
● In your created mad_libs app I want you to create a page

that outputs random generated mad libs. In Canvas you
will find an archive folder with a template of the story and
multiple files of different types of words. Your goal is for
the root of your program to output a randomised version
of the story using the words from the files chosen
randomly using Python’s random library.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

